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3.5.4 CONSTANT_BUFFER  

CONSTANT_BUFFER 
Project: All LenSNBh Bias: 2 
The CONSTANT_BUFFER packet is used to define the memory address of data that will be read by the CS unit and 
stored into the current CURBE entry. 

Programming Notes: 

• Issuing a CONSTANT_BUFFER packet with Valid set when the CS unit does not have any CURBE entries 
allocated in the URB results in UNDEFINED behavior. 

• Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries.  Therefore 
software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in 
the pipeline. 

 
DWord Bit Description 

0 31:29 Command Type 
Default Value: 3h GFXPIPE Format: OpCode  

28:27 Command SubType 
Default Value: 0h GFXPIPE_COMMON Format: OpCode  

26:24 3D Command Opcode 
Default Value: 0h GFXPIPE_PIPELINED Format: OpCode  

23:16 3D Command Sub Opcode 
Default Value: 02h CONSTANT_BUFFER Format: OpCode  

15:9 Reserved Project: All Format: MBZ  
8 Valid 

Project: All 
Format: Enable  
If TRUE, a Constant Buffer will be defined and possibly used in the pipeline (depending on 
FF unit state programming).  The Buffer Starting Address and Buffer LenSNBh fields 
are valid. 

If FALSE, the Constant Buffer becomes undefined and unused.  The Buffer Starting 
Address and Buffer LenSNBh fields are ignored.   The FF unit state descriptors must not 
specify the use of CURBE data, or behavior is UNDEFINED.  

7:0 DWord LenSNBh 
Default Value: 0h Excludes DWord (0,1) 
Format: =n Total LenSNBh - 2 
Project: All   
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CONSTANT_BUFFER 
1 31:6 Buffer Starting Address 

Project: All 
Format: GeneralStateOffset[31:6] or 

GraphicsAddress[31:6] (see below) 
 

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is clear 
(enabled), this field defines the location of the memory-resident constant data via a 64Byte-
granular offset from the General State Base Address. 

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is set 
(disabled), this field defines the location of the memory-resident constant data via a 64Byte-
granular Graphics Address (not offset). 
  
Programming Notes 

Constant Buffers can only be allocated in linear (not tiled) graphics memory 

Constant Buffers can only be mapped to Main Memory (UC) 
  

5:0 Buffer LenSNBh 
Project: All 
Format: U6 Count-1 in 512-bit units  
If Valid is set, this field specifies the lenSNBh of the constant data to be loaded from 
memory into the CURBE in 512-bit units (minus one).  The lenSNBh must be less than or 
equal to the URB Entry Allocation Size specified via the CS_URB_STATE command.   
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3.5.5 MEMORY_OBJECT_CONTROL_STATE 

This 4-bit field is used in various state commands and indirect state objects to define MLC/LLC cacheability, graphics data type, 
and encryption attributes for memory objects. 

 

Bit De scription 

3 Encrypted Data 

This field controls whether data is decrypted while being read.  This field is ignored for 
writes. 

Format = Enable 

2 Graphics Data Type (GFDT) 

This field contains the GFDT bit for this surface when writes occur.  GFDT can also be 
set by the SNBT.  The effective GFDT is the logical OR of this field with the GFDT from 
the SNBT entry.  This field is ignored for reads. 

The GFDT bit is stored in the LLC and selective cache flushing of lines with GFDT set is 
supported.  It is intended to be set on displayable data, which enables efficient flushing 
of data to be displayed after rendering, since display engine does not snoop the 
rendering caches.  Note that MLC would need to be completely flushed as it does not 
allow selective flushing. 

Format = U1 

1:0 Cacheability Control 

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC). 

.  

Format = U2 enumerated type 

00:  use cacheability control bits from SNBT entry 

01:  data is not cached in LLC or MLC 

10:  data is cached in LLC but not MLC 

11:  data is cached in both LLC and MLC 
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3.6 Memory Access Indirection 

The GPE supports the indirection of certain graphics (SNBT-mapped) memory accesses.  This support comes in the form of two 
base address state variables used in certain memory address computations with the GPE.   

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory structures after command 
buffers have been generated but prior to the their submittal for execution.  For example, as the driver builds the command stream 
it could append pipeline state descriptors, kernel binaries, etc. to a general state buffer.  References to the individual items would 
be inserting in the command buffers as offsets from the base address of the state buffer.  The state buffer could then be freely 
relocated prior to command buffer execution, with the driver only needing to specify the final base address of the state buffer.  
Two base addresses are provided to permit surface-related state (binding tables, surface state tables) to be maintained in a state 
buffer separate from the general state buffer. 

While the use of these base addresses is unconditional, the indirection can be effectively disabled by setting the base addresses to 
zero.  The following table lists the various GPE memory access paths and which base address (if any) is relevant. 
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Table 3-2. Base Address Utilization 

Base Address Used Memory Accesses 

CS unit reads from CURBE Constant Buffers via CONSTANT_BUFFER when 
INSTPM< CONSTANT_BUFFER Address Offset Disable> is clear (enabled).   

3D Pipeline FF state read by the 3D FF units, as referenced by state pointers 
passed via 3DSTATE_PIPELINE_POINTERS.   

Media pipeline FF state, as referenced by state pointers passed via 
MEDIA_PIPELINE_POINTERS 

General State Base Address 

DataPort memory accesses resulting from ‘stateless’ DataPort Read/Write 
requests.  See DataPort for a definition of the ‘stateless’ form of requests. 

Sampler reads of SAMPLER_STATE data and associated 
SAMPLER_BORDER_COLOR_STATE. 

Viewport states used by CLIP, SF, and WM/CC 

General State Base Address  

 

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE 

Normal EU instruction stream (non-system routine) General State Base Address 
[Pre-DevILK] 

Instruction Base Address 
[DevILK] only 

System routine EU instruction stream (starting address = SIP) 

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT 
pointers passed via 3DSTATE_BINDING_TABLE_POINTERS 

Surface State Base Address 

Sampler and DataPort reads of SURFACE_STATE data 

Indirect Object Base Address MEDIA_OBJECT Indirect Data accessed by the CS unit . 

CS unit reads from Ring Buffers, Batch Buffers 

CS unit reads from CURBE Constant Buffers via CONSTANT_BUFFER when 
INSTPM< CONSTANT_BUFFER Address Offset Disable> is set (disabled).   

CS writes resulting from PIPE_CONTROL command 

All VF unit memory accesses (Index Buffers, Vertex Buffers) 

All Sampler Surface Memory Data accesses (texture fetch, etc.) 

All DataPort memory accesses except ‘stateless’ DataPort Read/Write 
requests (e.g., RT accesses.) See Data Port for a definition of the ‘stateless’ 
form of requests. 

Memory reads resulting from STATE_PREFETCH commands 

Any physical memory access by the device 

None 

SNBT-mapped accesses not included above (i.e., default) 
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The following notation is used in the BSpec to distinguish between addresses and offsets: 

 
Notation Definition 

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a 
SNBT) 

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped 
by a SNBT) 

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State Base 
Address value, the result of which is interpreted as a virtual graphics memory byte 
address (mapped by a SNBT) 

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State Base 
Address value, the result of which is interpreted as a virtual graphics memory byte 
address (mapped by a SNBT) 

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base Address 
value, the result of which is interpreted as a virtual graphics memory byte address 
(mapped by a SNBT) 

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base 
Address value, the result of which is interpreted as a virtual graphics memory byte 
address (mapped by a SNBT) 
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3.6.1 STATE_ BASE_ADDRESS 

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect object 
accesses by the GPE.  (See Table 3-2. Base Address Utilization for details) 

Programming Notes: 

• The following commands must be reissued following any change to the base addresses: 
o 3DSTATE_PIPELINE_POINTERS 
o 3DSTATE_BINDING_TABLE_POINTERS 
o MEDIA_STATE_POINTERS. 

• Execution of this command causes a full pipeline flush, thus its use should be minimized for higher performance. 
 
 

3.6.1.1 [Pre-DevILK] 

STATE_BASE_ADDRESS 
Project: [Pre-DevILK] LenSNBh Bias: 2 
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect 
object accesses by the GPE.  (See Table 3-2. Base Address Utilization for details) 

Programming Notes: 

• The following commands must be reissued following any change to the base addresses: 
o 3DSTATE_PIPELINE_POINTERS 
o 3DSTATE_BINDING_TABLE_POINTERS 
o MEDIA_STATE_POINTERS. 

• MI_FLUSH command with ISC invalidate bit set should always be programmed prior to 
STATE_BASE_ADDRESS command. 

 
DWord Bit Description 

0 31:29 Command Type 
Default Value: 3h GFXPIPE Format: OpCode  

28:27 Command SubType 
Default Value: 0h GFXPIPE_COMMON Format: OpCode  

26:24 3D Command Opcode 
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode  

23:16 3D Command Sub Opcode 
Default Value: 01h STATE_BASE_ADDRESS Format: OpCode  

15:8 Reserved Project: All Format: MBZ  
7:0 DWord LenSNBh 

Default Value: 4h Excludes DWord (0,1) 
Format: =n Total LenSNBh - 2 
Project: All   
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STATE_BASE_ADDRESS 
1 31:12 General State Base Address 

Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for general state accesses.  See Table 3-2 for 
details on where this base address is used. 
  

11:1 Reserved Project: All Format: MBZ  
0 General State Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All 
   

2 31:12 Surface State Base Address 
Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for binding table and surface state accesses. 
See Table 3-2 for details on where this base address is used. 
  

11:1 Reserved Project: All Format: MBZ  
0 Surface State Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All 
   

3 31:12 Indirect Object Base Address 
Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT 
command.  See Table 3-2 for details on where this base address is used. 
  

11:1 Reserved Project: All Format: MBZ  
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STATE_BASE_ADDRESS 
0 Indirect Object Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All 
   

4 31:12 General State Access Upper Bound 
Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for general 
state accesses.  This includes all accesses that are offset from General State Base 
Address (see Table 3-2).  Read accesses from this address and beyond will return 
UNDEFINED values.  Data port writes to this address and beyond will be “dropped on the 
floor” (all data channels will be disabled so no writes occur).  Setting this field to 0 will 
cause this range check to be ignored. 

If non-zero, this address must be greater than the General State Base Address. 
  

11:1 Reserved Project: All Format: MBZ  
0 General State Access Upper Bound Modify Enable 

Project: All 
Format: Enable  
The bound in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated bound All 

1h Enable Modify the bound All 
   

5 31:12 Indirect Object Access Upper Bound 
Project: All 
Format: GraphicsAddress[31:12]  
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address 
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed 
at this address and beyond will appear to be 0.  Setting this field to 0 will cause this range 
check to be ignored. 

If non-zero, this address must be greater than the Indirect Object Base Address. 

Hardware ignores this field if indirect data is not present. 

Setting this field to FFFFFh will cause this range check to be ignored. 
  

11:1 Reserved Project: All Format: MBZ  
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STATE_BASE_ADDRESS 
0 Indirect Object Access Upper Bound Modify Enable 

Project: All 
Format: Enable  
The bound in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated bound All 

1h Enable Modify the bound All 
   

3.6.1.2 [DevILK] 

STATE_BASE_ADDRESS 
Project: [DevILK] LenSNBh Bias: 2 
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect 
object accesses by the GPE.  (See Table 3-2. Base Address Utilization for details) 

Programming Notes: 

• The following commands must be reissued following any change to the base addresses: 
o 3DSTATE_PIPELINE_POINTERS 
o 3DSTATE_BINDING_TABLE_POINTERS 
o MEDIA_STATE_POINTERS. 

• Execution of this command causes a full pipeline flush, thus its use should be minimized for higher 
performance. 

 
DWord Bit Description 

0 31:29 Command Type 
Default Value: 3h GFXPIPE Format: OpCode  

28:27 Command SubType 
Default Value: 0h GFXPIPE_COMMON Format: OpCode  

26:24 3D Command Opcode 
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode  

23:16 3D Command Sub Opcode 
Default Value: 01h STATE_BASE_ADDRESS Format: OpCode  

15:8 Reserved Project: All Format: MBZ  
7:0 DWord LenSNBh 

Default Value: 6h Excludes DWord (0,1) 
Format: =n Total LenSNBh - 2 
Project: All   
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STATE_BASE_ADDRESS 
1 31:12 General State Base Address 

Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for general state accesses.  See Table 3-2 for 
details on where this base address is used. 
  

11:1 Reserved Project: All Format: MBZ  
0 General State Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All 
   

2 31:12 Surface State Base Address 
Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for binding table and surface state accesses. 
See Table 3-2 for details on where this base address is used. 
  

11:1 Reserved Project: All Format: MBZ  
0 Surface State Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All 
   

3 31:12 Indirect Object Base Address 
Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT 
command.  See Table 3-2 for details on where this base address is used. 
  

11:1 Reserved Project: All Format: MBZ  
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STATE_BASE_ADDRESS 
0 Indirect Object Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All 
   

4 31:12 Instruction Base Address 
Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned base address for all EU instruction accesses.  

11:1 Reserved Project: All Format: MBZ  
0 Instruction Base Address Modify Enable 

Project: All 
Format: Enable  
The address in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated address All 

1h Enable Modify the address All   
5 31:12 General State Access Upper Bound 

Project: All 
Format: GraphicsAddress[31:12]  
Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for general 
state accesses.  This includes all accesses that are offset from General State Base 
Address (see Table 3-2).  Read accesses from this address and beyond will return 
UNDEFINED values.  Data port writes to this address and beyond will be “dropped on the 
floor” (all data channels will be disabled so no writes occur).  Setting this field to 0 will 
cause this range check to be ignored. 

If non-zero, this address must be greater than the General State Base Address. 
  

11:1 Reserved Project: All Format: MBZ  
0 General State Access Upper Bound Modify Enable 

Project: All 
Format: Enable  
The bound in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated bound All 

1h Enable Modify the bound All 
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STATE_BASE_ADDRESS 
6 31:12 Indirect Object Access Upper Bound 

Project: All 
Format: GraphicsAddress[31:12]  
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address 
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed 
at this address and beyond will appear to be 0.  Setting this field to 0 will cause this range 
check to be ignored. 

If non-zero, this address must be greater than the Indirect Object Base Address. 

Hardware ignores this field if indirect data is not present. 

Setting this field to FFFFFh will cause this range check to be ignored. 
  

11:1 Reserved Project: All Format: MBZ  
0 Indirect Object Access Upper Bound Modify Enable 

Project: All 
Format: Enable  
The bound in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated bound All 

1h Enable Modify the bound All 
   

7 31:12 Instruction Access Upper Bound 
Project: All 
Format: GraphicsAddress[31:12]  
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address 
access by an EU instruction.  Instruction data accessed at this address and beyond will 
return UNDEFINED values.  Setting this field to 0 will cause this range check to be ignored. 

If non-zero, this address must be greater than the Instruction Base Address. 
  

11:1 Reserved Project: All Format: MBZ  
0 Instruction Access Upper Bound Modify Enable 

Project: All 
Format: Enable  
The bound in this dword is updated only when this bit is set. 
 
Value Na me Description Project 

0h Disable Ignore the updated bound All 

1h Enable Modify the bound All 
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3.7 State Invalidation ([DevCTG+]) 

The STATE_POINTER_INVALIDATE command is provided as an optional mechanism to invalidate 3D/Media state pointers 
and pointers to constant data.  This is sometimes desirable to prevent prefetching of state between the time the pointed-to state is 
no longer needed, and the time the commands above are re-issued to point to new state. 

3.7.1 STATE_ POINTER_INVALIDATE ([DevCTG+]) 

STATE_POINTER_INVALIDATE 
Project: [DevCTG], [DevILK] LenSNBh Bias: 1 

The STATE_POINTER_INVALIDATE command marks the state pointers of the selected type(s) as invalid.  The 
corresponding state pointer command must be issued again prior to attempting any rendering operations that depend on 
the state whose pointers have been marked as invalid. 

The pointers initialized by the following commands are (potentially) invalidated by this command: 
• 3DSTATE_PIPELINE_POINTERS 
• 3DSTATE_CC_POINTERS 
• CONSTANT_BUFFER 
• MEDIA_STATE_POINTERS 

 
DWord Bit Description 

0 31:29 Command Type 
Default Value: 3h GFXPIPE Format: OpCode  

28:27 Command SubType 
Default Value: 1h GFXPIPE_SINGLE_DW Format: OpCode  

26:24 3D Command Opcode 
Default Value: 0h GFXPIPE_PIPELINED Format: OpCode  

23:16 3D Command Sub Opcode 
Default Value: 02h STATE_POINTER_INVALIDATE Format: OpCode  

15:3 Reserved Project: All Format: MBZ  
2 Pipelined State Pointers Invalidate 

Project: All 
Format: Invalidate Enable  
The pointers initialized with the last 3DSTATE_PIPELINED_POINTERS are marked as 
invalid if this bit is set.  Said pointers are unaffected if this bit is clear.  

1 Constant Buffer Invalidate 
Project: All 
Format: Invalidate Enable  
The pointer initialized with the last CONSTANT_BUFFER is marked as invalid.  Said pointer 
is unaffected if this bit is clear.  
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STATE_POINTER_INVALIDATE 
0 Media State Pointers Invalidate 

Project: All 
Format: Invalidate Enable  
The pointers initialized with the last MEDIA_STATE_POINTERS are marked as invalid.  
Said pointers are unaffected if this bit is clear.   
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3.8 Instruction and State Prefetch 

The STATE_PREFETCH command is provided strictly as an optional mechanism to possibly enhance pipeline performance by 
prefetching data into the GPE’s Instruction and State Cache (ISC). 

3.8.1 STATE_ PREFETCH 

STATE_PREFETCH 
Project: All LenSNBh Bias: 2 

(This command is provided strictly for performance optimization opportunities, and likely requires some 
experimentation to evaluate the overall impact of additional prefetching.) 

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into the 
GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function indirect state data.  
While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this command may be 
used to prefetch data not automatically prefetched, such as: 3D viewport state; Media pipeline Interface Descriptors; 
EU kernel instructions. 
 

DWord Bit Description 

0 31:29 Command Type 
Default Value: 3h GFXPIPE Format: OpCode  

28:27 Command SubType 
Default Value: 0h GFXPIPE_COMMON Format: OpCode  

26:24 3D Command Opcode 
Default Value: 0h GFXPIPE_PIPELINED Format: OpCode  

23:16 3D Command Sub Opcode 
Default Value: 03h STATE_PREFETCH Format: OpCode  

15:8 Reserved Project: All Format: MBZ  
7:0 DWord LenSNBh 

Default Value: 0h Excludes DWord (0,1) 
Format: =n Total LenSNBh - 2 
Project: All   

1 31:6 Prefetch Pointer 
Project: All 
Format: GraphicsAddress[31:6]  
Specifies the 64-byte aligned address to start the prefetch from.  This pointer is an absolute 
virtual address, it is not relative to any base pointer. 
  

5:3 Reserved Project: All Format: MBZ  
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STATE_PREFETCH 
2:0 Prefetch Count 

Project: All 
Format: U3 count of cache lines (minus one)  
Range [0,7] indicating a count of [1,8] 
Indicates the number of contiguous 64-byte cache lines that will be prefetched. 
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3.9 System Thread Configuration 

3.9.1 STATE_ SIP 

STATE_SIP 
Project: All LenSNBh Bias: 2 
The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all threads 
in execution. 

DWord Bit Description 

0 31:29 Command Type 
Default Value: 3h GFXPIPE Format: OpCode  

28:27 Command SubType 
Default Value: 0h GFXPIPE_COMMON Format: OpCode  

26:24 3D Command Opcode 
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode  

23:16 3D Command Sub Opcode 
Default Value: 02h STATE_SIP Format: OpCode  

15:8 Reserved Project: All Format: MBZ  
7:0 DWord LenSNBh 

Default Value: 0h Excludes DWord (0,1) 
Format: =n Total LenSNBh - 2 
Project: All   

1 31:4 System Instruction Pointer (SIP) 
Project: [Pre-DevILK] 
Format: General StateOffset[31:4]  
Specifies the instruction address of the system routine associated with the current context 
as a 128-bit granular offset from the General State Base Address.  SIP is shared by all 
threads in execution. The address specifies the double quadword aligned instruction 
location. 
  
Errata De scription Project 

BWT007 Instructions pointed at by offsets from General State Base 
must be contained within 32-bit physical address space 
(that is, must map to memory pages under 4G.) 

[DevBW-A] 

 
31:4 System Instruction Pointer (SIP) 

Project: [DevILK+] 
Format: Instruction Base Offset[31:4]  
Specifies the instruction address of the system routine associated with the current context 
as a 128-bit granular offset from the Instruction Base Address.  SIP is shared by all 
threads in execution. The address specifies the double quadword aligned instruction 
location.  

3:0 Reserved Project: All Format: MBZ   
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3.10 Command Ordering Rules 

There are several restrictions regarding the ordering of commands issued to the GPE.  This subsection describes these restrictions 
along with some explanation of why they exist.  Refer to the various command descriptions for additional information. 

The following flowchart illustrates an example ordering of commands which can be used to perform activity within the GPE.  
 

B6680-01

MEDIA_STATE_POINTERS3DSTATE_PIPELINE_POINTERS

URB_FENCEURB_FENCE

CONSTANT_BUFFERCONSTANT_BUFFER

MEDIA_OBJECT3DPRIMITIVE / 3DCONTROL

MI_FLUSH

PIPELINE_SELECT

CS_URB_STATE

Pipeline?
3D Media

Note: Common or Pipeline-
specific state-setting 
commands can be issued 
along any paths from this 
point down

 

3.10.1 PIPELINE_SELECT 

The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before switching to a different 
pipeline via use of the PIPELINE_SELECT command. Refer to Section 3.3 for details on the PIPELINE_SELECT command.  

3.10.2 PIPE_CONTROL 

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor does it rely on any other 
pipeline state.  It is intended to be used on both the 3D pipe and the Media pipe. It has special optimizations to support the 
pipelining capability in the 3D pipe which do not apply to the Media pipe. 
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3.10.3 URB-Related State-Setting Commands 

Several commands are used (among other things) to set state variables used in URB entry allocation --- specifically, the Number 
of URB Entries and the URB Entry Allocation Size state variables associated with various pipeline units.  These state variables 
must be set-up prior to the issuing of a URB_FENCE command.  (See the subsection on URB_FENCE below). 

CS_URB_STATE (only) specifies these state variables for the common CS FF unit.  3DSTATE_PIPELINED_POINTERs sets 
the state variables for FF units in the 3D pipeline, and MEDIA_STATE_POINTERS sets them for the Media pipeline.   
Depending on which pipeline is currently active, only one of these commands needs to be used.  Note that these commands can 
also be reissued at a later time to change other state variables, though if a change is made to (a) any Number of URB Entries and 
the URB Entry Allocation Size state variables or (b) the Maximum Number of Threads state for the GS or CLIP FF units,  a 
URB_FENCE command must follow. 

3.10.4 Common Pipeline State-Setting Commands 

The following commands are used to set state common to both the 3D and Media pipelines.  This state is comprised of CS FF unit 
state, non-pipelined global state (EU, etc.), and Sampler shared-function state. 

• STATE_BASE_ADDRESS 
• STATE_SIP 
• 3DSTATE_SAMPLER_PALETTE_LOAD 
• 3DSTATE_CHROMA_KEY 

The state variables associated with these commands must be set appropriately prior to initiating activity within a pipeline (i.e., 
3DPRIMITIVE or MEDIA_OBJECT).   
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3.10.5 3D Pipeline-Specific State-Setting Commands 

The following commands are used to set state specific to the 3D pipeline. 

• 3DSTATE_PIPELINED_POINTERS 
• 3DSTATE_BINDING_TABLE_POINTERS 
• 3DSTATE_VERTEX_BUFFERS 
• 3DSTATE_VERTEX_ELEMENTS 
• 3DSTATE_INDEX_BUFFERS 
• 3DSTATE_VF_STATISTICS 
• 3DSTATE_DRAWING_RECTANGLE 
• 3DSTATE_CONSTANT_COLOR 
• 3DSTATE_DEPTH_BUFFER 
• 3DSTATE_POLY_STIPPLE_OFFSET 
• 3DSTATE_POLY_STIPPLE_PATTERN 
• 3DSTATE_LINE_STIPPLE 
• 3DSTATE_GLOBAL_DEPTH_OFFSET 

The state variables associated with these commands must be set appropriately prior to issuing 3DPRIMITIVE.   

3.10.6 Media Pipeline-Specific State-Setting Commands 

The following commands are used to set state specific to the Media pipeline. 

• MEDIA_STATE_POINTERS 

The state variables associated with this command must be set appropriately prior to issuing MEDIA_OBJECT.   



 

Doc Ref #: IHD_OS_V1Pt1_3_10   55 

3.10.7 URB_FENCE (URB Fencing & Entry Allocation) 

URB_FENCE command is used to initiate URB entry deallocation/allocation processes within pipeline FF units.   The 
URB_FENCE command is first processed by the CS FF unit, and is then directed down the currently selected pipeline to the FF 
units comprising that pipeline.   

As the FF units receive the URB_FENCE command, a URB entry deallocation/allocation process with be initiated if (a) the FF 
unit is currently enabled (note that some cannot be disabled) and (b) the ModifyEnable bit associated with that FF unit’s Fence 
value is set.   If these conditions are met, the deallocation of the FF unit’s currently-allocated URB entries (if any) commences.  
(Implementation Note:  For better performance, this deallocation proceeds in parallel with allocation of new handles).   

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries.  Therefore software must 
subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline. 

The allocation of new handles (if any) for the FF unit then commences.  The parameters used to perform this allocation come 
from (a) the URB_FENCE Fence values, and (b) the relevant URB entry state associated with the FF unit:  specifically, the 
Number of URB Entries and the URB Entry Allocation Size.  For the CS unit, this state is programmed via CS_URB_STATE, 
while the other FF units receive this state indirectly via PIPELINED_STATE_POINTERS or MEDIA_STATE_POINTERS 
commands. 

Although a FF unit’s allocation process relies on it’s URB Fence as well as the relevant FF unit pipelined state, only the 
URB_FENCE command initiates URB entry deallocation/allocation.  This imposes the following restriction:  If a change is made 
to (a) the Number of URB Entries or URB Entry Allocation Size state for a given FF unit or (b) the Maximum Number of 
Threads state for the GS or CLIP FF units, a URB_FENCE command specifying a valid URB Fence state for that FF unit must 
be subsequently issued –  at some point prior to the next CONSTANT_BUFFER, 3DPRIMITIVE (if using the 3D pipeline) or 
MEDIA_OBJECT (if using the Media pipeline).  It is invalid to change Number of URB Entries or URB Entry Allocation Size 
state for an enabled FF units without also issuing a subsequent URB_FENCE command specifying a valid Fence valid for that FF 
unit. 

It is valid to change a FF unit’s Fence value without specifying a change to its Number of URB Entries or URB Entry 
Allocation Size state, though the values must be self-consistent. 
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3.10.8 CONSTANT_BUFFER (CURBE Load) 

The CONSTANT_BUFFER command is used to load constant data into the CURBE URB entries owned by the CS unit.  In order 
to write into the URB, CS URB fencing and allocation must have been established.  Therefore, CONSTANT_BUFFER can only 
be issued after CS_URB_STATE and URB_FENCE commands have been issued, and prior to any other pipeline processing (i.e., 
3DPRIMITIVE or MEDIA_OBJECT).  See the definition of CONSTANT_BUFFER for more details. 

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries.  Therefore software must 
subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline. 

3.10.9 3DPRIMITIVE 

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS) needs to be valid.  
Therefore the commands used to set this state need to have been issued at some point prior to the issue of 3DPRIMITIVE. 

3.10.10 MEDIA_OBJECT 

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state) needs to be valid.  
Therefore the commands used to set this state need to have been issued at some point prior to the issue of MEDIA_OBJECT. 

 

3.11 Video Command Streamer (VCS) 
VCS (Video Command Streamer) unit is primarily served as the software programming interface between the O/S driver and the 
MFD Engine.  It is responsible for fetching, decoding, and dispatching of data packets (Media Commands with the header DW 
removed) to the front end interface module of Video Engine.   
 
Its logic functions include  

• MMIO register programming interface. 
• DMA action for fetching of run lists and ring data from memory. 
• Management of the Head pointer for the Ring Buffer. 
• Decode of ring data and sending it to the appropriate destination 
• Handling of user interrupts and ring context switch interrupt. 
• Flushing the Video Engine 
• Handle NOP  

 
The register programming (RM) bus is a dword interface bus that is driven by the Gx Command Streamer.  The VCS unit will 
only claim memory mapped I/O cycles that are targeted to its range of 0x4000 to 0x4FFFF.   The Gx and Video Engines use 
semaphore to synchronize their operations. 
 
Any interaction and control protocols between the VCS and Gx CS in IronLake will remain the same as in Cantiga.  But in 
Gesher, VCS will operate completely independent of the Gx CS.  
 
The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped register write cycle.  The 
DMA inside VCS is kicked off.  The DMA fetches commands from memory based on the starting address and head pointer.  The 
DMA requests cache lines from memory (one cacheline CL at a time).  There is guaranteed space in the DMA FIFO (16 CL deep) 
for data coming back from memory.  The DMA control logic has copies of the head pointer and the tail pointer.  The DMA 
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increments the head pointer after making requests for ring commands.  Once the DMA copy of the head pointer becomes equal to 
the tail pointer, the DMA stops requesting. 
 
The parser starts executing once the DMA FIFO has valid commands.  All the commands have a header dword packet.  Based on 
the encoding in the header packet, the command may be targeted towards AVC/VC1/MPEG2 engine or the command parser.  
After execution of every command, the actual head pointer is updated.  The ring is considered empty when the head pointer 
becomes equal to the tail pointer. 
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4. Graphics Command Formats 

4.1 Command Formats 

This section describes the general format of the graphics device commands. 

Graphics commands are defined with various formats.  The first DWord of all commands is called the header DWord.  The 
header contains the only field common to all commands -- the client field that determines the device unit that will process the 
command data.  The Command Parser examines the client field of each command to condition the further processing of the 
command and route the command data accordingly. 

Some Genx Devices include two Command Parsers, each controlling an independent processing engine.  These will be referred to 
in this document as the Render Command Parser (RCP) and the Video Codec Command Parser (VCCP).   

Valid client values for the Render Command Parser are: 

 
Client # Client 

0 Memory Interface (MI_xxx) 

1 Miscellaneous (includes Trusted Ops) 

2 2D Rendering (xxx_BLT_xxx) 

3 Graphics Pipeline (3D and Media) 

4-7 Reserved 

Valid client values for the Video Codec Command Parser are: 

 
Client # Client 

0 Memory Interface (MI_xxx) 

1-2 Reserved 

3 AVC and VC1 State and Object Commands 

4-7 Reserved 

On [DevBW] and [DevCL], no Video Codec Command Parser is present. 

Graphics commands vary in lenSNBh, though are always multiples of DWords.  The lenSNBh of a command is either: 

Implied by the client/opcode 
Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows how much data to 

copy/process) 
Variable, with a field in the header indicating the total lenSNBh of the command 
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Note that command sequences require QWord alignment and padding to QWord lenSNBh to be placed in Ring and Batch 
Buffers. 

The following subsections provide a brief overview of the graphics commands by client type provides a diagram of the formats of 
the header DWords for all commands. Following that is a list of command mnemonics by client type. 

4.1.1 Memor y Interface Commands 
Memory Interface (MI) commands are basically those commands which do not require processing by the 2D or 3D 
Rendering/Mapping engines.  The functions performed by these commands include: 

Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.) 

Hardware synchronization (e.g., flush, wait-for-event) 
Software synchronization (e.g., Store DWORD, report head) 
Graphics buffer definition (e.g., Display buffer, Overlay buffer) 
Miscellaneous functions 

Refer to the Memory Interface Commands chapter for a description of these commands. 

4.1.2 2D Commands 

The 2D commands include various flavors of Blt operations, along with commands to set up Blt engine state without actually 
performing a Blt.  Most commands are of fixed lenSNBh, though there are a few commands that include a variable amount of 
"inline" data at the end of the command.  

Refer to the 2D Commands chapter for a description of these commands. 

4.1.3 3D/Media Commands 

The 3D/Media commands are used to program the graphics pipelines for 3D or media operations.   

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter for a description of the 
media-related state and object commands. 

4.1.4 Video Codec Commands 

4.1.4.1 AVC Commands [DevCTG/DevILK] 

The AVC commands are used to program the AVC Bit-Stream Serial Decoder attached to the Video Codec Command Parser.  
See the AVC BSD chapter for a description of these commands. 

4.1.4.2 VC1 Commands [DevCTG/DevILK] 

The VC1 commands are used to program the VC1 Bit-Stream Serial Decoder attached to the Video Codec Command Parser.  See 
the VC1 BSD chapter for a description of these commands. 



 

60  Doc Ref #:  IHD_OS_V1Pt1_3_10 

4.1.5 Command Header 

Table 4-1.  RCP Command Header Format 

Bits 

TYPE 31:29 28:24 23 22 21:0 

Memory 

Interface 

(MI) 

000 Opcode 
00h – NOP 
0Xh – Single DWord Commands 
1Xh – Two+ DWord Commands 
2Xh – Store Data Commands 
3Xh – Ring/Batch Buffer Cmds 

 Identification No./DWord Count 
Command Dependent Data 

5:0 – DWord Count 
5:0 – DWord Count 
5:0 – DWord Count 

Reserved 001 Opcode – 11111 23:19 
Sub Opcode 
00h – 01h 

18:16 

Re-
served 

15:0  

DWord Count 

2D 010 Opcode   Command Dependent Data 
4:0 – DWord Count 

TYPE 31:29 28:27 26:24 23:16 15:8 7:0 

Common 011 00 Opcode  – 000 Sub Opcode Data DWord 
Count 

Common (NP) 011 00 Opcode  – 001 Sub Opcode Data DWord 
Count 

Reserved 011 00 Opcode – 010 – 111    

Single Dword 
Command 

011 01 Opcode – 000 – 001 Sub Opcode  N/A 

Reserved 011 01 Opcode – 010 – 111    

Media State 011 10 Opcode  – 000 Sub Opcode  Dword 
Count 

Media Object 011 10 Opcode  – 001 – 010 Sub Opcode Dword Count 

Reserved 011 10 Opcode  – 011 – 111    

3DState 011 11 Opcode  –  000 Sub Opcode Data DWord 
Count 

3DState (NP) 011 11 Opcode  –  001 Sub Opcode Data DWord 
Count 

PIPE_Control 011 11 Opcode  – 010  Data DWord 
Count 

3DPrimitive 011 11 Opcode  –  011  Data DWord 
Count 

Reserved 011 11 Opcode  –  100 – 111    

Reserved 1XX XX     

NOTES:  

The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed before such a state variable 
is updated.  The other state variables are pipelined (default). 
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4.2 Command Map 
This section provides a map of the graphics command opcodes. 

4.2.1 Memory Interface Command Map 
All the following commands are defined in Memory Interface Commands.Table 4-2.  Memory Interface 
Commands for RCP 

Pipe Opcode 
(28:23)  

Command 

Render 
Video 

[DevCT
G+] 

Blitter 
 

1-DWord 

00h MI_NOOP All All All 
01h Reserved    

02h MI_USER_INTERRUPT All All All 
03h MI_WAIT_FOR_EVENT All All All 
04h MI_FLUSH  All All  
05h MI_ARB_CHECK All All All 
06h Reserved     
07h MI_REPORT_HEAD All All All 
08h MI_ARB_ON_OFF [DevCTG+]   
09h Reserved    
0Ah MI_BATCH_BUFFER_END All All All 
0Bh MI_SUSPEND_FLUSH [DevILK]   

0Fh Reserved    

2+ DWord 

10h Reserved    
11h MI_OVERLAY_FLIP 

Reserved [DevCTG+] 
[pre-
DevCTG] 

  

12h MI_LOAD_SCAN_LINES_INCL  
Reserved  

All   

13h MI_LOAD_SCAN_LINES_EXCL 
Reserved  

All   

14h MI_DISPLAY_BUFFER_INFO [DevBW], [DevCL] 
MI_DISPLAY_FLIP [DevCTG+] 

All   

15h Reserved    
16h MI_SEMAPHORE_MBOX 

[DevBW], [DevCL] Reserved 
[DevCTG+] All All 

17h Reserved    
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Pipe Opcode 
(28:23)  

Command 

Render 
Video 

[DevCT
G+] 

Blitter 
 

18h MI_SET_CONTEXT All   
1Ah–1Fh Reserved    

Store Data 

20h MI_STORE_DATA_IMM All All All 
21h MI_STORE_DATA_INDEX All All All 
22h MI_LOAD_REGISTER_IMM All All All 
23h MI_UPDATE_SNBT [DevCTG+]   
24h MI_STORE_REGISTER_MEM All All All 
25h MI_PROBE  [DevCTG] 

[DevILK] 
  

26h MI_FLUSH_DW 
[DevILK] This is the opcode for 
MI_REPORT_PERF_COUNT.  It only applied to 
Render pipe 

 All All 

28h MI_REPORT_PERF_COUNT  [DevILK]   
2Ah–2Fh Reserved    

Ring/Batch Buffer  

30h Reserved    

31h MI_BATCH_BUFFER_START All All All 
32h–35h Reserved    
37h–3Fh Reserved    
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4.2.2 2D Command Map 

All the following commands are defined in Blitter Instructions. 
 

Opcode (28:22) Command Comments 

00h Reserved  
01h XY_SETUP_BLT  
02h Reserved  
03h XY_SETUP_CLIP_BLT  
04h–10h Reserved  
11h XY_SETUP_MONO_PATTERN_SL_BLT  
12h–23h Reserved  
24h XY_PIXEL_BLT  
25h XY_SCANLINES_BLT  
26h XY_TEXT_BLT  
23h–30h Reserved  
31h XY_TEXT_IMMEDIATE_BLT  
32h–3Fh Reserved  
40h COLOR_BLT  
41h–42h Reserved  
43h SRC_COPY_BLT  
44h–4Fh Reserved  
50h XY_COLOR_BLT  
51h XY_PAT_BLT  
52h XY_MONO_PAT_BLT  
53h XY_SRC_COPY_BLT  
54h XY_MONO_SRC_COPY_BLT  
55h XY_FULL_BLT  
56h XY_FULL_MONO_SRC_BLT  
57h XY_FULL_MONO_PATTERN_BLT  
58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT  
59h XY_MONO_PAT_FIXED_BLT  
5Ah–70h Reserved  
71h XY_MONO_SRC_COPY_IMMEDIATE_BLT  
72h XY_PAT_BLT_IMMEDIATE  
73h XY_SRC_COPY_CHROMA_BLT  
74h XY_FULL_IMMEDIATE_PATTERN_BLT  
75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT  
76h XY_PAT_CHROMA_BLT  
77h XY_PAT_CHROMA_BLT_IMMEDIATE  
78h–7Fh Reserved  
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4.2.3 3D/Media Command Map 
Pipeline 

Type 
(28:27) 

Opcode Sub 
Opcode 

Command De finition Chapter 

Common 
(pipelined) 

Bits 
26:24 

Bits 
23:16 

 

0h 0h 00h URB_FENCE  Graphics Processing Engine 

0h 0h 01h CS_URB_STATE [Pre-DevSNB] Graphics Processing Engine 

0h 0h 02h CONSTANT_BUFFER [Pre-DevSNB] Graphics Processing Engine 

0h 0h 03h STATE_PREFETCH Graphics Processing Engine 

0h 0h 04h-FFh Reserved  

Common 
(non-

pipelined) 

Bits 
26:24 

Bits 
23:16 

 

0h 1h 00h Reserved  n/a 

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine 

0h 1h 02h STATE_SIP Graphics Processing Engine 

0h 1h 04h–FFh Reserved n/a 

Reserved Bits 
26:24 

Bits 
23:16 

 

0h 2h–7h XX Reserved n/a 

 
Pipeline 

Type 
(28:27) 

Opcode Sub 
Opcode 

Command De finition Chapter 

Single DW Opcode 
(26:24) 

Bits 
23:16 

 

1h 0h 00h-01h Reserved n/a 

1h 0h 02h STATE_POINTER_INVALIDATE 

[DevCTG+] 

Graphics Processing Engine 

1h 0h 03h-0Ah Reserved n/a 

1h 0h 0Bh 3DSTATE_VF_STATISTICS  Vertex Fetch 

1h 0h 0Ch-FFh Reserved n/a 

1h 1h 00h-03h Reserved n/a 

1h 1h 04h PIPELINE_SELECT Graphics Processing Engine 

1h 1h 05h-FFh Reserved n/a 

1h 2h-7h XX Reserved n/a 
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Media Opcode 
(26:24) 

Bits 
23:16 

 

2h 0h 00h MEDIA_STATE_POINTERS  Media 

2h 0h 05h-FFh Reserved n/a 

2h 1h 00h MEDIA_OBJECT Media 

2h 1h 01h MEDIA_OBJECT_EX  Media 

2h 1h 02h MEDIA_OBJECT_PRT Media 

2h 1h 04h-FFh Reserved n/a 

2h 2h–7h XX Reserved n/a 

 

 

Pipeline 
Type 

(28:27) 

Opcode  Sub 
Opcode  

Command De finition Chapter 

3D State 
(Pipelined

) 

Bits 
26:24 

Bits 
23:16 

 

3h 0h 00h 3DSTATE_PIPELINED_POINTERS  3D Pipeline 

3h 0h 03h Reserved n/a 

3h 0h 05h Reserved  3D Pipeline 

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch 

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch 

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch 

3h 0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch 

3h 0h 0Ch Reserved n/a 

3h 0h 11h 3DSTATE_GS [DevSNB+] Geometry Shader 

3h 0h 12h 3DSTATE_CLIP [DevSNB+] Clipper 

3h 0h 13h 3DSTATE_SF [DevSNB+] Strips & Fans 

3h 0h 14h 3DSTATE_WM [DevSNB+] Windower 

3D State 
(Non-

Pipelined) 

Bits 
26:24 

Bits 
23:16 

 

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans 

3h 1h 01h 3DSTATE_CONSTANT_COLOR  Color Calculator 

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine 

3h 1h 03h Reserved  

3h 1h 04h 3DSTATE_CHROMA_KEY  Sampling Engine 
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Pipeline 
Type 

(28:27) 

Opcode  Sub 
Opcode  

Command De finition Chapter 

3h 1h 05h 3DSTATE_DEPTH_BUFFER Windower 

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower 

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower 

3h 1h 08h 3DSTATE_LINE_STIPPLE Windower 

3h 1h 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP  Windower 

3h 1h 0Ah [DevCTG]: 3DSTATE_AA_LINE_PARAMS 
[DevCTG+] 

Windower 

3h 1h 0Bh 3DSTATE_GS_SVB_INDEX [DevCTG+] Geometry Shader 

3h 1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 [DevCTG-
B+] 

Sampling Engine 

3h 1h 0Eh 3DSTATE_STENCIL_BUFFER [DevILK] 

Reserved [ILK,  

Windower 

3h 1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER [ILK,  

Reserved [ILK,] 

Windower 

3h 1h 10h 3DSTATE_CLEAR_PARAMS [ILK,  Windower 

3h 1h 11h 3DSTATE_MONOFILTER_SIZE [ILK] Sampling Engine 

3h 1h 17h 3DSTATE_SO_DECL_LIST HW Streamout 

3h 1h 18h 3DSTATE_SO_BUFFER HW Streamout 

3h 1h 19h–FFh Reserved n/a 

3D 
(Control) 

Bits 
26:24 

Bits 
23:16 

 

3h 2h 00h PIPE_CONTROL 3D Pipeline 

3h 2h 01h–FFh Reserved n/a 

3D 
(Primitive) 

Bits 
26:24 

Bits 
23:16 

 

3h 3h 00h 3DPRIMITIVE Vertex Fetch 

3h 3h 01h–FFh Reserved n/a 

3h 4h–7h 00h–FFh Reserved n/a 
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4.2.4 Video Codec Command Map 

4.2.4.1 AVC BSD Command Map [DevCTG/DevILK] 

This map is N/A to [DevBW], [DevCL]  

Table 4-3.  AVC Commands for the VCCP 

Pipeline 
Type (28:27) 

Opcode 
(26:24) 

Sub 
Opcode 
(23:16) 

Command De finition Chapter 

AVC State        

2h 4h 0h AVC_BSD_IMG_STATE AVC BSD 

2h 4h 1h AVC_BSD_QM_STATE AVC BSD 

2h 4h 2h AVC_BSD_SLICE_STATE AVC BSD 

2h 4h 3h AVC_BSD_BUF_BASE_STATE AVC BSD 

2h 4h 4h BSD_IND_OBJ_BASE_ADDR AVC BSD 

2h 4h 5h-7h Reserved n/a 

 AVC Object       

2h 4h 8h AVC_BSD_OBJECT AVC BSD 

2h 4h 9h-FFh Reserved n/a 

4.2.4.2 VC1 BSD Command Map [DevCTG/DevILK] 

This map is N/A to [DevBW], [DevCL].  

 

Pipeline 
Type (28:27) 

Opcode 
(26:24) 

Sub 
Opcode 
(23:16) 

Command De finition Chapter 

VC1 State        

2h 5h 0h VC1_BSD_PIC_STATE VC1 BSD  

2h 5h 1h Reserved n/a 

2h 5h 2h Reserved n/a 

2h 5h 3h VC1_BSD_BUF_BASE_STATE VC1 BSD 

2h 5h 4h Reserved n/a 

2h 5h 5h-7h Reserved n/a 
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VC1 Object       

2h 5h 8h VC1_BSD_OBJECT VC1 BSD 

2h 5h 9h-FFh Reserved n/a 
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5.  Register Address Maps 

5.1 Graphics Register Address Map 

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers. Individual register bit field 
descriptions are provided in the following chapters. PCI configuration address maps and register bit descriptions are provided in 
the following chapter. 

5.1.1 Memory and I/O Space Registers 

This section provides a high-level register map (register groupings per function). The memory and I/O maps for the graphics 
device registers are shown in the following table, except PCI Configuration registers that are described in the following chapter.  

NOTE:  The VGA and Extended VGA registers can be accessed via standard VGA I/O locations as well as via memory-mapped 
locations.  

NOTE: All graphics MMIO registers can also be accessed via CPU I/O.  See IOBASE, MMIO_INDEX and MMIO_DATA I/O 
registers in the MontaraGM Cspec. 

The memory space address listed for each register is an offset from the base memory address programmed into the MMADR 
register (PCI configuration offset 14h). 

Table 5-1. Graphics Controller Register Memory and I/O Map 

Start 
Offset 

End 
Offset 

Description 

00000h 00FFFh VGA and Extended VGA Control Registers. These registers are located in both I/O 
space and memory space. The VGA and Extended VGA registers contain the 
following register sets: General Control/Status, Sequencer (SRxx), Graphics 
Controller (GRxx), Attribute Controller (Arxx), VGA Color Palette, and CRT Controller 
(CRxx) registers. Detailed bit descriptions are provided in the VGA and Extended 
VGA Register Chapter. The registers within a set are accessed using an indirect 
addressing mechanism as described at the beginning of each section. Note that some 
of the register description sections have additional operational information at the 
beginning of the section 

01000h 01FFFh Reserved 
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Start 
Offset 

End 
Offset 

Description 

02000h 02FFFh Instruction, Memory, and Interrupt Control Registers: 
Instruction Control Registers Ring Buffer registers and page table control registers 
are located in this address range. Various instruction status, error, and operating 
registers are located in this group of registers.  
Graphics Memory Fence Registers. The Graphics Memory Fence registers are 
used for memory tiling capabilities.  
Interrupt Control/Status Registers. This register set provides interrupt control/status 
for various GC functions. 
Display Interface Control Register. This register controls the FIFO watermark and 
provides burst lenSNBh control. 
Logical Context Registers 
Pipeline Statistic Counters 

03000h 031FFh FENCE & Per Process SNBT Control registers 

03200h 03FFFh Frame Buffer Compression Registers 

04000h 043FFh Instruction Control Registers for Secondary (BSD) Command Streamer. 

On [DevBW] and [DevCL] this range is Reserved. 

04400h 04FFFh Video Decode Fixed Function Control Registers. 

On [DevBW] and [DevCL] this range is Reserved. 

05000h 05FFFh I/O Control Registers 

06000h 06FFFh Clock Control Registers. This memory address space is the location of the GC clock 
control and power management registers 

09000h 09FFFh Reserved 

0A000h 0AFFFh Display Palette Registers 

0B000h 0FFFFh Reserved 

10000h 13FFFh MMIO MCHBAR.  Alias through which the graphics driver can access registers in the 
MCHBAR accessed through device 0. 

14000h 2FFFFh Reserved 

30000h 3FFFFh Overlay Registers. These registers provide control of the overlay engine. The overlay 
registers are double-buffered with one register buffer located in graphics memory and 
the other on the device. On-chip registers are not directly writeable. To update the on-
chip registers software writes to the register buffer area in graphics memory and 
instructs the device to update the on-chip registers. 

40000h 5FFFFh Reserved 

60000h 6FFFFh Display Engine Pipeline Registers  

70000h 72FFFh Display and Cursor Registers 

73000h 73FFFh Performance Counters 

74000h 7FFFFh Reserved 
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5.1.2 PCI Configuration Space  

See the releveant EDS/C-Specs for details on accessing PCI configuration space, PCI address map tables, and register 
descriptions. 
 

5.1.3 Graphics Register Memory Address Map  

All graphics device registers are directly accessible via memory-mapped I/O and indirectly accessible via the MMIO_INDEX and 
MMIO_DATA I/O registers.  In addition, the VGA and Extended VGA registers are I/O mapped.  
 

5.2 VGA and Extended VGA Register Map  

For I/O locations, the value in the address column represents the register I/O address. For memory mapped locations, this address 
is an offset from the base address programmed in the MMADR register. 

5.2.1 VGA and Extended VGA I/O and Memory Register Map 
Table 5-2. I/O and Memory Register Map 

Address Register Name (Read) Register Name (Write) 

2D Registers 

3B0h–3B3h Reserved Reserved 

3B4h VGA CRTC Index (CRX) 
(monochrome) 

VGA CRTC Index (CRX) (monochrome) 

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome) 

3B6h–3B9h Reserved Reserved 

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR) 

3BBh–3BFh Reserved Reserved 

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/ 
VGA Attribute Controller Data 
(alternating writes select ARX or write 
ARxx Data) 

3C1h VGA Attribute Controller Data  
(read ARxx data) 

Reserved 

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register 
(MSR) 

3C3h Reserved Reserved 

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX) 

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx) 

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK) 

3C7h VGA Color Palette State 
(DACSTATE) 

VGA Color Palette Read Mode Index 
(DACRX) 
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Address Register Name (Read) Register Name (Write) 

3C8h VGA Color Palette Write Mode Index 
(DACWX) 

VGA Color Palette Write Mode Index 
(DACWX) 

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA) 

3CAh VGA Feature Control Register (FCR) Reserved 

3CBh Reserved Reserved 

3CCh VGA Miscellaneous Output Register 
(MSR) 

Reserved 

3CDh Reserved Reserved 

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX) 

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx) 

3D0h–3D1h Reserved Reserved 

2D Registers 

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX) 

3D5h VGA CRTC Data (CRxx) VGA CRTC Data  (CRxx) 

System Configuration Registers 

3D6h GFX/2D Configurations Extensions 
Index (XRX) 

GFX/2D Configurations Extensions 
Index (XRX) 

3D7h GFX/2D Configurations Extensions 
Data (XRxx) 

GFX/2D Configurations Extensions 
Data (XRxx) 

2D Registers 

3D8h–3D9h Reserved Reserved 

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR) 

3DBh–3DFh Reserved Reserved 
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5.3 Indirect VGA and Extended VGA Register Indices 

The registers listed in this section are indirectly accessed by programming an index value into the appropriate SRX, GRX, ARX, 
or CRX register.  The index and data register address locations are listed in the previous section. Additional details concerning the 
indirect access mechanism are provided in the VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or 
CRxx sections). 

Table 5-3. 2D Sequence Registers (3C4h / 3C5h) 

Index Sy m Description 

00h SR00 Sequencer Reset 

01h SR01 Clocking Mode 

02h SR02 Plane / Map Mask 

03h SR03 Character Font 

04h SR04 Memory Mode 

07h SR07 Horizontal Character Counter Reset 
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Table 5-4. 2D Graphics Controller Registers (3CEh / 3CFh) 

Index Sym Register Name 

00h GR00 Set / Reset 
01h GR01 Enable Set / Reset 
02h GR02 Color Compare 
03h GR03 Data Rotate 
04h GR04 Read Plane Select 
05h GR05 Graphics Mode 
06h GR06 Miscellaneous 
07h GR07 Color Don’t Care 
08h GR08 Bit Mask 
10h GR10 Address Mapping 
11h GR11 Page Selector 
18h GR18 Software Flags 

Table 5-5. 2D Attribute Controller Registers (3C0h / 3C1h) 

Index Sym Register Name 

00h AR00 Palette Register 0 

01h AR01 Palette Register 1 

02h AR02 Palette Register 2 

03h AR03 Palette Register 3 

04h AR04 Palette Register 4 

05h AR05 Palette Register 5 

06h AR06 Palette Register 6 

07h AR07 Palette Register 7 

08h AR08 Palette Register 8 

09h AR09 Palette Register 9 

0Ah AR0A Palette Register A 

0Bh AR0B Palette Register B 

0Ch AR0C Palette Register C 

0Dh AR0D Palette Register D 

0Eh AR0E Palette Register E 

0Fh AR0F Palette Register F 

10h AR10 Mode Control 

11h AR11 Color 

12h AR12 Memory Plane Enable 

13h AR13 Horizontal Pixel Panning 

14h AR14 Color Select 
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Table 5-6. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h) 

Index Sym Register Name 

00h CR00 Horizontal Total 

01h CR01 Horizontal Display Enable End 

02h CR02 Horizontal Blanking Start 

03h CR03 Horizontal Blanking End 

04h CR04 Horizontal Sync Start 

05h CR05 Horizontal Sync End 

06h CR06 Vertical Total  

07h CR07 Overflow 

08h CR08 Preset Row Scan 

09h CR09 Maximum Scan Line 

0Ah CR0A Text Cursor Start 

0Bh CR0B Text Cursor End 

0Ch CR0C Start Address High 

0Dh CR0D Start Address Low 

0Eh CR0E Text Cursor Location High 

0Fh CR0F Text Cursor Location Low 

10h CR10 Vertical Sync Start 

11h CR11 Vertical Sync End 

12h CR12 Vertical Display Enable End 

13h CR13 Offset 

14h CR14 Underline Location 

15h CR15 Vertical Blanking Start 

16h CR16 Vertical Blanking End 

17h CR17 CRT Mode 

18h CR18 Line Compare 

22h CR22 Memory Read Latch Data 

24h CR24 Test Register for Toggle State of Attribute Control Register 
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6. Memory Data Formats 
This chapter describes the attributes associated with the memory-resident data objects operated on by the graphics pipeline.  This 
includes object types, pixel formats, memory layouts, and rules/restrictions placed on the dimensions, physical memory location, 
pitch, alignment, etc. with respect to the specific operations performed on the objects. 

6.1 Memory Object Overview 

Any memory data accessed by the device is considered part of a memory object of some memory object type. 

6.1.1 Memor y Object Types 

The following table lists the various memory objects types and an indication of their role in the system. 

 
Memory Object Type Role 

Graphics Translation Table (SNBT) Contains PTEs used to translate “graphics addresses” into physical 
memory addresses. 

Hardware Status Page Cached page of sysmem used to provide fast driver synchronization. 

Logical Context Buffer Memory areas used to store (save/restore) images of hardware 
rendering contexts.  Logical contexts are referenced via a pointer to the 
corresponding Logical Context Buffer. 

Ring Buffers Buffers used to transfer (DMA) instruction data to the device.  Primary 
means of controlling rendering operations. 

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers. 

State Descriptors Contains state information in a prescribed layout format to be read by 
hardware.  Many different state descriptor formats are supported. 

Vertex Buffers Buffers of 3D vertex data indirectly referenced through “indexed” 3D 
primitive instructions. 

VGA Buffer 

(Must be mapped UC on PCI) 

Graphics memory buffer used to drive the display output while in legacy 
VGA mode. 

Display Surface Memory buffer used to display images on display devices. 

Overlay Surface Memory buffer used to display overlaid images on display devices. 

Overlay Register, Filter Coefficients 

Buffer 

Memory area used to provide double-buffer for Overlay register and filter 
coefficient loading. 

Cursor Surface Hardware cursor pattern in memory. 

2D Render Source Surface used as primary input to 2D rendering operations. 
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Memory Object Type Role 

2D Render R-M-W Destination 2D rendering output surface that is read in order to be combined in the 
rendering function.  Destination surfaces that accessed via this Read-
Modify-Write mode have somewhat different restrictions than Write-Only 
Destination surfaces. 

2D Render Write-Only Destination 2D rendering output surface that is written but not read by the 2D 
rendering function.  Destination surfaces that accessed via a Write-Only 
mode have somewhat different restrictions than Read-Modify-Write 
Destination surfaces. 

2D Monochrome Source 1 bpp surfaces used as inputs to 2D rendering after being converted to 
foreground/background colors. 

2D Color Pattern 8x8 pixel array used to supply the “pattern” input to 2D rendering 
functions. 

DIB “Device Independent Bitmap” surface containing “logical” pixel values 
that are converted (via LUTs) to physical colors. 

3D Color Buffer Surface receiving color output of 3D rendering operations.  May also be 
accessed via R-M-W (aka blending).  Also referred to as a Render 
Target. 

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D 
rendering operations.  Accessed via RMW. 

3D Texture Map Color surface (or collection of surfaces) which provide texture data in 3D 
rendering operations. 

“Non-3D” Texture 

 

Surface read by Texture Samplers, though not in normal 3D rendering 
operations (e.g., in video color conversion functions). 

Motion Comp Surfaces These are the Motion Comp reference pictures. 

Motion Comp Correction Data Buffer This is Motion Comp intra-coded or inter-coded correction data. 

 

6.2 Channel Formats 

6.2.1 Unsigned Normalized (UNORM) 

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0.  The minimum value (all 0’s) is 
interpreted as 0.0, the maximum value (all 1’s) is interpreted as 1.0.  Values in between are equally spaced.  For example, a 2-bit 
UNORM value would have the four values 0, 1/3, 2/3, and 1. 

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by dividing the integer by 2n-1. 

6.2.2 Gamma Conversion (SRGB) 

Gamma conversion is only supported on UNORM formats.  If this flag is included in the surface format name, it indicates that a 
reverse gamma conversion is to be done after the source surface is read, and a forward gamma conversion is to be done before the 
destination surface is written. 
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6.2.3 Signed Normalized (SNORM) 

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0.  If the incoming value is interpreted as a 
2’s-complement n-bit signed integer, the interpreted value can be calculated by dividing the integer by 2n-1-1.  Note that the most 
negative value of -2n-1 will result in a value slightly smaller than -1.0.  This value is clamped to -1.0, thus there are two 
representations of -1.0 in SNORM format.  

6.2.4 Unsigned Integer (UINT/USCALED) 

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a range  
of 0 to 2n-1.   

The UINT formats copy the source value to the destination (zero-extending if required), keeping the value as an integer.   

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 --> 3.0f).  For 32-bit sources, 
the value is rounded to nearest even. 

6.2.5 Signed Integer (SINT/SSCALED) 

A signed integer value with n bits is interpreted as a 2’s complement integer with a range of -2n-1 to +2n-1-1.   

The SINT formats copy the source value to the destination (sign-extending if required), keeping the value as an integer.   

The SSCALED formats convert the integer into the corresponding floating point value (e.g., 0xFFFD --> -3.0f).  For 32-bit 
sources, the value is rounded to nearest even. 

6.2.6 Floating Point (FLOAT) 

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic.  The IA-32 Intel (R) Architecture Software Developer’s 
Manual also describes floating point data types (though GENX deviates slightly from those behaviors). 

6.2.6.1 32-bit Floating Point 

Bit De scription 

31 Sign (s) 

30:23 Exponent (e)  Biased Exponent 

22:0 Fraction (f)  Does not include “hidden one” 

The value of this data type is derived as: 
• if e == 255 and f != 0, then v is NaN regardless of s  
• if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)  
• if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)  
• if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)  
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)  
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6.2.6.2 64-bit Floating Point 

Bit De scription 

63 Sign (s) 

62:52 Exponent (e)  Biased Exponent 

51:0 Fraction (f)  Does not include “hidden one” 

The value of this data type is derived as: 
• if e == b’11..11’ and f != 0, then v is NaN regardless of s  
• if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)  
• if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)  
• if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)  
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)  

6.2.6.3 16-bit Floating Point 

Bit De scription 

15 Sign (s) 

14:10 Exponent (e)  Biased Exponent 

9:0 Fraction (f)  Does not include “hidden one” 

The value of this data type is derived as: 
• if e == 31 and f != 0, then v is NaN regardless of s  
• if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity)  
• if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f)  
• if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers)  
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)  
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The following table represents relationship between 32 bit and 16 bit floating point ranges: 

 
flt32 

exponent Unbiased 
exponent   flt16 

exponent flt16  fraction 
 255         
 254  127       
 ...         

 127+16  16  Infinity  31  1.1111111111 
 127+15  15  Max exponent  30  1.xxxxxxxxxx 

 127  0    15  1.xxxxxxxxxx 
 113  -14   Min exponent  1  1.xxxxxxxxxx 
 112    Denormalized  0  0.1xxxxxxxxx 
 111    Denormalized  0  0.01xxxxxxxx 
 110    Denormalized  0  0.001xxxxxxx 
 109    Denormalized  0  0.0001xxxxxx 
 108    Denormalized  0  0.00001xxxxx 
 107    Denormalized  0  0.000001xxxx 
 106    Denormalized  0  0.0000001xxx 
 115    Denormalized  0  0.00000001xx 
 114    Denormalized  0  0.000000001x 
 113    Denormalized  0  0.0000000001 
 112    Denormalized  0  0.0 
 ...          
 0      0   0.0 

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to nearest even.  

6.2.6.4 11-bit Floating Point 

Bit De scription 

10:6 Exponent (e)  Biased Exponent 

5:0 Fraction (f)  Does not include “hidden one” 

The value of this data type is derived as: 
• if e == 31 and f != 0 then v = NaN 
• if e == 31 and f == 0 then v = +infinity 
• if 0 < e < 31, then v = 2(e-15)*(1.f)  
• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)  
• if e == 0 and f == 0, then v = 0 (zero)  
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6.2.6.5 10-bit Floating Point 

Bit De scription 

9:5 Exponent (e)  Biased Exponent 

4:0 Fraction (f)  Does not include “hidden one” 

The value of this data type is derived as: 
• if e == 31 and f != 0 then v = NaN 
• if e == 31 and f == 0 then v = +infinity 
• if 0 < e < 31, then v = 2(e-15)*(1.f)  
• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)  
• if e == 0 and f == 0, then v = 0 (zero)  

6.2.6.6 Shared Exponent 

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent.  The three fractions assume an impled “0” 
rather than an implied “1” as in the other floating point formats.  This format does not support infinity and NaN values.  There are 
no sign bits, only positive numbers and zero can be represented.  The value of each channel is determined as follows, where “f” is 
the fraction of the corresponding channel, and “e” is the shared exponent. 

v = (0.f)*2(e-15) 

 
Bit De scription 

31:27 Exponent (e)  Biased Exponent 

26:18 Blue Fraction 

17:9 Green Fraction 

8:0 Red Fraction 

6.3 Non-Video Surface Formats 

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data (e.g., discrete pixel 
(RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, bump map values etc.  Many of these pixel 
formats are common to the various pixel-oriented memory object types. 
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6.3.1 Surface Format Naming 

Unless indicated otherwise, all pixels are stored in “little endian” byte order.  I.e., pixel bits 7:0 are stored in byte n, pixel bits 
15:8 are stored in byte n+1, and so on.    The format labels include color components in little endian order (e.g., R8G8B8A8 
format is physically stored as R, G, B, A). 

The name of most of the surface formats specifies its format.  Channels are listed in little endian order (LSB channel on the left, 
MSB channel on the right), with the channel format specified following the channels with that format.  For example, 
R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of red in SNORM format, 5 bits of green in SNORM format, 
and 6 bits of blue in UNORM format. 

6.3.2 Intensity  Formats 

All surface formats containing “I” include an intensity value.  When used as a source surface for the sampling engine, the 
intensity value is replicated to all four channels (R,G,B,A) before being filtered.  Intensity surfaces are not supported as 
destinations. 

6.3.3 Luminance Formats 

All surface formats contaning “L” include a luminance value.  When used as a source surface for the sampling engine, the 
luminance value is replicated to the three color channels (R,G,B) before being filtered.  The alpha channel is provided either from 
another field or receives a default value.  Luminance surfaces are not supported as destinations. 

6.3.4 R1_UNORM (same as R1_UINT) and MONO8 

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are replicated to all color channels.   
Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to Texel[0,0].  This is different from the format used for 
monochrome sources in the Blt engine. 

 
7 6 5 4 3 2 1 0 

T7 T6 T5 T4 T3 T2 T1 T0 

 
Bit De scription 

T0 Texel 0 
On texture reads, this (unsigned) 1-bit value is replicated to all color channels. 
Format: U1 

... ... 

T7 Texel 7 
On texture reads, this (unsigned) 1-bit value is replicated to all color channels. 
Format: U1 



 

Doc Ref #: IHD_OS_V1Pt1_3_10   83 

MONO8 format is identical to R1_UNORM but has different semantics for filtering.  MONO8 is the only supported format for 
the MAPFILTER_MONO filter.  See the Sampling Engine chapter. 

6.3.5 Palette Formats 

6.3.5.1 P4A4_UNORM 

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in the low nibble).   

 
7                4 3   0 

Alpha Palette Index 

 
Bit De scription 

7:4 Alpha  
Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 
255 to yield a [0.0,1.0] Alpha value. 
Format: U4 

3:0 Palette Index 

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 
3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U4 

6.3.5.2 A4P4_UNORM 

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the high nibble). 

 
7                4 3   0 

Palette  Index Alpha 

 
Bit De scription 

7:4 Palette  Index 

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U4 

3:0 Alpha 
Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by 
255 to yield a [0.0,1.0] alpha value. 
Format: U4 
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6.3.5.3 P8A8_UNORM 

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in the low byte).   

 
15                8 7   0 

Alpha Palette Index 

 
Bit De scription 

7:4 Alpha  
Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value. 
Format: U8 

3:0 Palette Index 

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 
3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U8 

6.3.5.4 A8P8_UNORM 

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the high byte). 

 
15                8 7   0 

Palette  Index Alpha 

 
Bit De scription 

15:8 Palette  Index 

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U8 

7:0 Alpha 
Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value. 
Format: U8 
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6.3.5.5 P8_UNORM 

This surface format contains only an 8-bit Color Index value. 

 
Bit De scription 

7:0 Palette  Index 

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture palette. 

Format: U8 

6.3.5.6 P2_UNORM 

This surface format contains only a 2-bit Color Index value. 

 
Bit De scription 

1:0 Palette  Index 

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette. 

Format: U2 
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6.4 Compressed Surface Formats 

This section contains information on the internal organization of compressed surface formats.  

6.4.1 FXT Texture Formats  

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel blocks into 128 bits. In 
each compression format, the 32 texels in the two 4x4 blocks are arranged according to the following diagram:  

Figure 6-1.  FXT1 Encoded Blocks 

B6682-01

t16 t17 t18 t19

t20 t21 t22 t23

t24 t25 t26 t27

t28 t29 t30 t31

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

 

6.4.1.1 Overview of FXT1 Formats 

During the compression phase, the encoder selects one of the four formats for each block based on which encoding scheme results 
in best overall visual quality.   The following table lists the four different modes and their encodings: 

Table 6-1. FXT1 Format Summary 

Bit 
127 

Bit 
126 

Bit 
125 

Block 
Compression 

Mode 

Summary Description 

0 0 X CC_HI 2 R5G5B5 colors supplied.  Single LUT with 7 interpolated color 
values and transparent black 

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT. 

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied.  LERP bit selects between 1 LUT with 3 
discrete colors + transparent black and 2 LUTs using interpolated 
values of Color 0,1 (t0-15) and Color 1,2 (t16-31). 

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and 
Color2,3 LUT used for t16-31.  Alpha bit selects between LUTs with 4 
interpolated colors or 3 interpolated colors + transparent black. 
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6.4.1.2 FXT1 CC_HI Format 

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the encoded block.  These base 
colors are then expanded (using high-order bit replication) to 24-bit RGB colors, and used to define an 8-entry lookup table of 
interpolated color values (the 8th entry is transparent black).  The encoded block contains a 3-bit index value per texel that is used 
to lookup a color from the table. 

6.4.1.2.1 CC_HI Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format: 

Table 6-2. FXT CC_HI Block Encoding 

Bit De scription 

127:126 Mode = ‘00’b (CC_HI) 

125:121 Color 1 Red 

120:116 Color 1 Green 

115:111 Color 1 Blue 

110:106 Color 0 Red 

105:101 Color 0 Green 

100:96 Color 0 Blue 

95:93 Texel 31 Select 

50:48 Texel 16 Select 

47:45 Texel 15 Select 

2:0 Texel 0 Select 
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6.4.1.2.2 CC_HI Block Decoding 

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as 
shown in the following table: 

Table 6-3. FXT CC_HI Decoded Colors 

Expanded Color 
Bit 

Expanded Channel 
Bit 

Encoded Block 
Source Bit 

Color 1 [23:19] Color 1 Red [7:3] [125:121] 

Color 1 [18:16] Color 1 Red [2:0] [125:123] 

Color 1 [15:11] Color 1 Green [7:3] [120:116] 

Color 1 [10:08] Color 1 Green [2:0] [120:118] 

Color 1 [07:03] Color 1 Blue [7:3] [115:111] 

Color 1 [02:00] Color 1 Blue [2:0] [115:113] 

Color 0 [23:19] Color 0 Red [7:3] [110:106] 

Color 0 [18:16] Color 0 Red [2:0] [110:108] 

Color 0 [15:11] Color 0 Green [7:3] [105:101] 

Color 0 [10:08] Color 0 Green [2:0] [105:103] 

Color 0 [07:03] Color 0 Blue [7:3] [100:96] 

Color 0 [02:00] Color 0 Blue [2:0] [100:98] 

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors (with Alpha = 0FFh), along 
with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table: 

Table 6-4. FXT CC_HI Interpolated Color Table 

Interpolated 
Color 

Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh 

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh 

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh 

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh 

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh 

6 Color1.RGB 0FFh 

7 RGB = 0,0,0 0 

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded CC_HI block is used to 
index into a 32-bit A8R8G8B8 color from the table completing the decode of the CC_HI block. 
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6.4.1.3 FXT1 CC_CHROMA Format 

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block.  These colors are then 
expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB colors.  The encoded block contains a 2-bit 
index value per texel that is used to lookup a 24-bit RGB color from the table.  The Alpha component defaults to fully opaque 
(0FFh). 

6.4.1.3.1 CC_CHROMA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format: 

Table 6-5. FXT CC_CHROMA Block Encoding 

Bit De scription 

127:125 Mode = ‘010’b (CC_CHROMA) 

124 Unused 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

...  

33:32 Texel 16 Select 

31:30 Texel 15 Select 

...  

1:0 Texel 0 Select 

 



 

90  Doc Ref #:  IHD_OS_V1Pt1_3_10 

6.4.1.3.2 CC_CHROMA Block Decoding 

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as shown in the 
following tables: 

Table 6-6. FXT CC_CHROMA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 
Color 3 [18:16] Color 3 Red [2:0] [123:121] 
Color 3 [15:11] Color 3 Green [7:3] [118:114] 
Color 3 [10:08] Color 3 Green [2:0] [118:116] 
Color 3 [07:03] Color 3 Blue [7:3] [113:109] 
Color 3 [02:00] Color 3 Blue [2:0] [113:111] 
Color 2 [23:17] Color 2 Red [7:3] [108:104] 
Color 2 [18:16] Color 2 Red [2:0] [108:106] 
Color 2 [15:11] Color 2 Green [7:3] [103:99] 
Color 2 [10:08] Color 2 Green [2:0] [103:101] 
Color 2 [07:03] Color 2 Blue [7:3] [98:94] 
Color 2 [02:00] Color 2 Blue [2:0] [98:96] 
Color 1 [23:17] Color 1 Red [7:3] [93:89] 
Color 1 [18:16] Color 1 Red [2:0] [93:91] 
Color 1 [15:11] Color 1 Green [7:3] [88:84] 
Color 1 [10:08] Color 1 Green [2:0] [88:86] 
Color 1 [07:03] Color 1 Blue [7:3] [83:79] 
Color 1 [02:00] Color 1 Blue [2:0] [83:81] 
Color 0 [23:17] Color 0 Red [7:3] [78:74] 
Color 0 [18:16] Color 0 Red [2:0] [78:76] 
Color 0 [15:11] Color 0 Green [7:3] [73:69] 
Color 0 [10:08] Color 0 Green [2:0] [73:71] 
Color 0 [07:03] Color 0 Blue [7:3] [68:64] 
Color 0 [02:00] Color 0 Blue [2:0] [68:66] 
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This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded CC_CHROMA block is 
used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 0FFh) completing the decode of the CC_CHROMA 
block. 

Table 6-7. FXT CC_CHROMA Interpolated Color Table 

Texel Select Color ARGB 

0 Color0.ARGB 

1 Color1.ARGB 

2 Color2.ARGB 

3 Color3.ARGB 

6.4.1.4 FXT1 CC_MIXED Format 

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0 and Color 1 are used 
for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.   

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit RGB colors.  The encoded 
block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color from the table.  The Alpha component 
defaults to fully opaque (0FFh). 

6.4.1.4.1 CC_MIXED Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format: 

 

Table 6-8. FXT CC_MIXED Block Encoding 

Bit De scription 

127 Mode = ‘1’b (CC_MIXED) 

126 Color 3 Green [0] 

125 Color 1 Green [0] 

124 Alpha [0] 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 
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Bit De scription 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

1:0 Texel 0 Select 

6.4.1.4.2 CC_MIXED Block Decoding 

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block. 

Alpha[0] = 0 Decoding 

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as per the following table: 

Table 6-9. FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125] 
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The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as shown in 
the following table: 

Table 6-10. FXT CC_MIXED Decoded Colors (Alpha[0] = 0) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10] Color 2 Green [2] [33] XOR [126]] 

Color 2 [09:08] Color 2 Green [1:0] [103:100] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10] Color 0 Green [2] [1] XOR [125] 

Color 0 [09:08] Color 0 Green [1:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 
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The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four interpolated colors (with Alpha = 
0FFh).  The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 16-31 indices, as 
shown in the following figures: 

Table 6-11. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15) 

Texel 0-15 
Select 

Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (2*Color0.RGB + Color1.RGB + 1) /3  0FFh 

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh 

3 Color1.RGB 0FFh 

Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31) 

Texel 16-31  
Select 

Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB  0FFh 

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh 

3 Color3.RGB 0FFh 

Alpha[0] = 1 Decoding 

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values.  Color1 and Color3 are encoded as RGB565 
colors, with the Green LSB obtained as shown in the following table: 

Table 6-13. FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 
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All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following diagram. 

Table 6-14. FXT CC_MIXED Decoded Colors (Alpha[0] = 1) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 
Color 3 [18:16] Color 3 Red [2:0] [123:121] 
Color 3 [15:11] Color 3 Green [7:3] [118:114] 
Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 
Color 3 [07:03] Color 3 Blue [7:3] [113:109] 
Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:19] Color 2 Red [7:3] [108:104] 
Color 2 [18:16] Color 2 Red [2:0] [108:106] 
Color 2 [15:11] Color 2 Green [7:3] [103:99] 
Color 2 [10:08] Color 2 Green [2:0] [103:101] 
Color 2 [07:03] Color 2 Blue [7:3] [98:94] 
Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 
Color 1 [18:16] Color 1 Red [2:0] [93:91] 
Color 1 [15:11] Color 1 Green [7:3] [88:84] 
Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:87] 
Color 1 [07:03] Color 1 Blue [7:3] [83:79] 
Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:19] Color 0 Red [7:3] [78:74] 
Color 0 [18:16] Color 0 Red [2:0] [78:76] 
Color 0 [15:11] Color 0 Green [7:3] [73:69] 
Color 0 [10:08] Color 0 Green [2:0] [73:71] 
Color 0 [07:03] Color 0 Blue [7:3] [68:64] 
Color 0 [02:00] Color 0 Blue [2:0] [68:66] 
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The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors.  The Color0,1 table is 
used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 16-31 indices.  The color at index 1 is the 
linear interpolation of the base colors, while the color at index 3 is defined as Black (0,0,0) with Alpha = 0, as shown in the 
following figures: 

Table 6-15. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15) 

Texel 0-15 
Select 

Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (Color0.RGB + Color1.RGB) /2 0FFh 

2 Color1.RGB 0FFh 

3 Black (0,0,0) 0 

Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31) 

Texel 16-31  
Select 

Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (Color2.RGB + Color3.RGB) /2 0FFh 

2 Color3.RGB 0FFh 

3 Black (0,0,0) 0 

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded CC_MIXED block is 
used to index into the appropriate 32-bit A8R8G8B8 color from the table, completing the decode of the CC_CMIXED block. 

6.4.1.5 FXT1 CC_ALPHA Format 

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block.  A control bit (LERP) is used to 
define the lookup table (or tables) used to dereference the 2-bit Texel Selects. 
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6.4.1.5.1 CC_ALPHA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format: 

Table 6-17.  FXT CC_ALPHA Block Encoding 

Bit De scription 

127:125 Mode = ‘011’b (CC_ALPHA) 

124 LERP 

123:119 Color 2 Alpha 

118:114 Color 1 Alpha 

113:109 Color 0 Alpha 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

1:0 Texel 0 Select 
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6.4.1.5.2 CC_ALP HA Block Decoding 

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as 
shown in the following tables: 

Table 6-18. FXT CC_ALPHA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [31:27] Color 2 Alpha [7:3] [123:119] 

Color 2 [26:24] Color 2 Alpha [2:0] [123:121] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [31:27] Color 1 Alpha [7:3] [118:114] 

Color 1 [26:24] Color 1 Alpha [2:0] [118:116] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [31:27] Color 0 Alpha [7:3] [113:109] 

Color 0 [26:24] Color 0 Alpha [2:0] [113:111] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 
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LERP = 0 Decoding  

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th entry defined as transparent 
black (ARGB=0,0,0,0).   Each 2-bit Texel n Select field of the encoded CC_ALPHA block is used to index into a 32-bit 
A8R8G8B8 color from the table completing the decode of the CC_ALPHA block. 

Table 6-19. FXT CC_ALPHA Interpolated Color Table (LERP=0) 

Texel Select Color  Alpha 

0 Color0.RGB Color0.Alpha 

1 Color1.RGB Color1.Alpha 

2 Color2.RGB Color2.Alpha 

3 Black (RGB=0,0,0) 0 

LERP = 1 Decoding  

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors.  The Color0,1 table is used as 
a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-31 indices, as shown in the following figures: 

Table 6-20.  FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15) 

Texel 0-15 
Select 

Color ARGB 

0 Color0.ARGB 

1 (2*Color0.ARGB + Color1.ARGB + 1) /3  

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

Table 6-21.  FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 

Texel 16-31  
Select 

Color ARGB 

0 Color2.ARGB 

1 (2*Color2.ARGB + Color1.ARGB + 1) /3  

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 
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6.4.2 BC4 

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data.  An 8-byte 
compression block represents a 4x4 block of texels.  The texels are labeled as texel[row][column] where both row and column 
range from 0 to 3.  Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows: 

Bit De scription 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] bit code 

21:19 texel[0][1] bit code 

24:22 texel[0][2] bit code 

27:25 texel[0][3] bit code 

30:28 texel[1][0] bit code 

33:31 texel[1][1] bit code 

36:34 texel[1][2] bit code 

39:37 texel[1][3] bit code 

42:40 texel[2][0] bit code 

45:43 texel[2][1] bit code 

48:46 texel[2][2] bit code 

51:49 texel[2][3] bit code 

54:52 texel[3][0] bit code 

57:55 texel[3][1] bit code 

60:58 texel[3][2] bit code 

63:61 texel[3][3] bit code 
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There are two interpolation modes, chosen based on which reference color is larger.  The first mode has the two reference colors 
plus six equal-spaced interpolated colors between the reference colors, chosen based on the three-bit code for that texel.  The 
second mode has the two reference colors plus four interpolated colors, chosen by six of the three-bit codes.  The remaining two 
codes select min and max values for the colors.  The values of red_0 through red_7 are computed as follows: 
 
red_0 = red_0;                             // bit code 000 
red_1 = red_1;                             // bit code 001 
if (red_0 > red_1) 
{ 

red_2 = (6 * red_0 + 1 * red_1) / 7;   // bit code 010 
red_3 = (5 * red_0 + 2 * red_1) / 7;   // bit code 011 
red_4 = (4 * red_0 + 3 * red_1) / 7;   // bit code 100 
red_5 = (3 * red_0 + 4 * red_1) / 7;   // bit code 101 
red_6 = (2 * red_0 + 5 * red_1) / 7;   // bit code 110 
red_7 = (1 * red_0 + 6 * red_1) / 7;   // bit code 111 

} 
else 
{ 
 red_2 = (4 * red_0 + 1 * red_1) / 5;   // bit code 010 
 red_3 = (3 * red_0 + 2 * red_1) / 5;   // bit code 011 
 red_4 = (2 * red_0 + 3 * red_1) / 5;   // bit code 100 
 red_5 = (1 * red_0 + 4 * red_1) / 5;   // bit code 101 
 red_6 = UNORM ? 0.0 : -1.0;            // bit code 110 (0 for UNORM, -1 for SNORM) 
 red_7 = 1.0;      // bit code 111 
} 
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6.4.3 BC5 

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data.  A 16-byte 
compression block represents a 4x4 block of texels.  The texels are labeled as texel[row][column] where both row and column 
range from 0 to 3.  Texel[0][0] is the upper left texel.   

The 16-byte compression block is laid out as follows: 

Bit De scription 

7:0 red_0 
15:8 red_1 

18:16 texel[0][0] red bit code 
21:19 texel[0][1] red bit code 
24:22 texel[0][2] red bit code 
27:25 texel[0][3] red bit code 
30:28 texel[1][0] red bit code 
33:31 texel[1][1] red bit code 
36:34 texel[1][2] red bit code 
39:37 texel[1][3] red bit code 
42:40 texel[2][0] red bit code 
45:43 texel[2][1] red bit code 
48:46 texel[2][2] red bit code 
51:49 texel[2][3] red bit code 
54:52 texel[3][0] red bit code 
57:55 texel[3][1] red bit code 
60:58 texel[3][2] red bit code 
63:61 texel[3][3] red bit code 
71:64 green_0 
79:72 green_1 
82:80 texel[0][0] green bit code 
85:83 texel[0][1] green bit code 
88:86 texel[0][2] green bit code 
91:89 texel[0][3] green bit code 
94:92 texel[1][0] green bit code 
97:95 texel[1][1] green bit code 

100:98 texel[1][2] green bit code 
103:101 texel[1][3] green bit code 
106:104 texel[2][0] green bit code 
109:107 texel[2][1] green bit code 
112:110 texel[2][2] green bit code 
115:113 texel[2][3] green bit code 
118:116 texel[3][0] green bit code 
121:119 texel[3][1] green bit code 
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Bit De scription 

124:122 texel[3][2] green bit code 
127:125 texel[3][3] green bit code 

There are two interpolation modes, chosen based on which reference color is larger.  The first mode has the two reference colors 
plus six equal-spaced interpolated colors between the reference colors, chosen based on the three-bit code for that texel.  The 
second mode has the two reference colors plus four interpolated colors, chosen by six of the three-bit codes.  The remaining two 
codes select min and max values for the colors.  The values of red_0 through red_7 are computed as follows: 
 
red_0 = red_0;                             // bit code 000 
red_1 = red_1;                             // bit code 001 
if (red_0 > red_1) 
{ 

red_2 = (6 * red_0 + 1 * red_1) / 7;   // bit code 010 
red_3 = (5 * red_0 + 2 * red_1) / 7;   // bit code 011 
red_4 = (4 * red_0 + 3 * red_1) / 7;   // bit code 100 
red_5 = (3 * red_0 + 4 * red_1) / 7;   // bit code 101 
red_6 = (2 * red_0 + 5 * red_1) / 7;   // bit code 110 
red_7 = (1 * red_0 + 6 * red_1) / 7;   // bit code 111 

} 
else 
{ 
 red_2 = (4 * red_0 + 1 * red_1) / 5;   // bit code 010 
 red_3 = (3 * red_0 + 2 * red_1) / 5;   // bit code 011 
 red_4 = (2 * red_0 + 3 * red_1) / 5;   // bit code 100 
 red_5 = (1 * red_0 + 4 * red_1) / 5;   // bit code 101 
 red_6 = UNORM ? 0.0 : -1.0;            // bit code 110 (0 for UNORM, -1 for SNORM) 
 red_7 = 1.0;      // bit code 111 
} 

The same calculations are done for green, using the corresponding reference colors and bit codes. 

6.5 Video Pixel/Texel Formats 

This section describes the “video” pixel/texel formats with respect to memory layout.  See the Overlay chapter for a description of 
how the Y, U, V components are sampled.   

6.5.1 Packed Memory Organization 

Color components are all 8 bits in size for YUV formats.  For YUV 4:2:2 formats each DWord will contain two pixels and only 
the byte order affects the memory organization. 

The following four YUV 4:2:2 surface formats are supported, listed with alternate names: 
• YCRCB_NORMAL (YUYV/YUY2)  
• YCRCB_SWAPUVY (VYUY)  (R8G8_B8G8_UNORM) 
• YCRCB_SWAPUV (YVYU) (G8R8_G8B8_UNORM) 
• YCRCB_SWAPY (UYVY) 

The channels are mapped as follows: 
Cr (V) Red 
Y Green 
Cb (U) Blue 
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Figure 6-2. Memory layout of packed YUV 4:2:2 formats 
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6.5.2 Planar Memory Organization 

Planar formats use what could be thought of as separate buffers for the three color components. Because there is a separate stride 
for the Y and U/V data buffers, several memory footprints can be supported. 

Note:  There is no direct support for use of planar video surfaces as textures.  The sampling engine can be used to operate on each 
of the 8bpp buffers separately (via a single-channel 8-bit format such as I8_UNORM).  The U and V buffers can be written 
concurrently by using multiple render targets from the pixel shader.  The Y buffer must be written in a separate pass due to its 
different size. 

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data: 
1. The memory organization of the common YV12 data, where all three planes are contiguous and the strides of U and V 

components are half of that of the Y component. 
2.  An alternative memory structure that the addresses of the three planes are independent but satisfy certain alignment 

restrictions. 
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Figure 6-3. YUV 4:2:0 Format Memory Organization 
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The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are contiguous. The stride of 
the U and V planes is a quarter of that of the Y plane. 

Figure 6-4. YUV 4:1:0 Format Memory Organization 
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6.6 Surface Memory Organizations 

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats. 
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6.7 Graphics Translation Tables 

The Graphics Translation Tables SNBT (Graphics Translation Table, sometimes known as the global SNBT) and PPSNBT (Per-
Process Graphics Translation Table) are memory-resident page tables containing an array of DWord Page Translation Entries 
(PTEs) used in mapping logical Graphics Memory addresses to physical  memory addresses, and sometimes snooped system 
memory “PCI” addresses. 

The graphics translation tables must reside in (unsnooped) system memory. 

The base address (MM offset) of the SNBT and the PPSNBT are programmed via the PSNBBL_CTL and PSNBBL_CTL2 MI 
registers, respectively.  The translation table base addresses must be 4KB aligned.  The SNBT size can be either 128KB, 256KB 
or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes respectively) and is physically contiguous.  The global SNBT 
should only be programmed via the range defined by SNBTADR.  The PPSNBT is programmed directly in memory.  The per-
process SNBT (PPSNBT) size is controlled by the PSNBBL_CTL2 register.  The PPSNBT can, in addition to the above sizes, 
also be 64KB in size (corresponding to a 64MB aperture).  Refer to the SNBT Range chapter for a bit definition of the PTE 
entries. 

6.8 Hardware Status Page 

The hardware status page is a naturally-aligned 4KB page residing in snooped system memory.  This page exists primarily to 
allow the device to report status via PCI master writes – thereby allowing the driver to read/poll WB memory instead of UC reads 
of device registers or UC memory. 

The address of this page is programmed via the HWS_PGA MI register.  The definition of that register (in Memory Interface 
Registers) includes a description of the layout of the Hardware Status Page. 

6.9 Instruction Ring Buffers 

Instruction ring buffers are the memory areas used to pass instructions to the device.   Refer to the Programming Interface chapter 
for a description of how these buffers are used to transport instructions. 

The RINGBUF register sets (defined in  Memory Interface Registers) are used to specify the ring buffer memory areas.  The ring 
buffer must start on a 4KB boundary and be allocated in linear memory.  The lenSNBh of any one ring buffer is limited to 2MB. 

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must reside in the same memory space as the 
vertex buffers.  

6.10 Instruction Batch Buffers 

Instruction batch buffers are contiguous streams of instructions referenced via an MI_BATCH_BUFFER_START and related 
instructions (see Memory Interface Instructions, Programming Interface).  They are used to transport instructions external to ring 
buffers. 

Note that batch buffers should not be mapped to snooped SM (PCI) addresses.  The device will treat these as MainMemory (MM) 
address, and therefore not snoop the CPU cache. 
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The batch buffer must be QWord aligned and a multiple of QWords in lenSNBh.  The ending address is the address of the last 
valid QWord in the buffer.  The lenSNBh of any single batch buffer is “virtually unlimited” (i.e., could theoretically be 4GB in 
lenSNBh). 

6.11 Display, Overlay, Cursor Surfaces 

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode.  See the Display chapter 
for specifics on how these surfaces are defined/used. 

6.12 2D Render Surfaces 
These surfaces are used as general source and/or destination operands in 2D Blt operations.   

Note that the device provides no coherency between 2D render surfaces and the texture cache – i.e., the texture cache must be 
explicitly invalidated prior to the use of a texture that has been modified via the Blt engine. 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, restrictions on their size, 
placement, etc. 

6.13 2D Monochrome Source 
These 1bpp surfaces are used as source operands to certain 2D Blt operations, where the Blt engine expands the 1bpp source into 
the required color depth.   

The device uses the texture cache to store monochrome sources.  There is no mechanism to maintain coherency between 2D 
render surfaces and (texture)-cached monochrome sources, software is required to explicitly invalidate the texture cache before 
using a memory-based monochrome source that has been modified via the Blt engine.  (Here the assumption is that SW enforces 
memory-based monochrome source surfaces as read-only surfaces). 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, restrictions on their size, 
placement, coherency rules, etc. 

6.14 2D Color Pattern 

Color pattern surfaces are used as special pattern operands in 2D Blt operations.   

The device uses the texture cache to store color patterns.  There is no mechanism to maintain coherency between 2D render 
surfaces and (texture)-cached color patterns, software is required to explicitly invalidate the texture cache before using a memory-
based color pattern that has been modified via the Blt engine.  (Here the assumption is that SW enforces memory-based color 
pattern surfaces as read-only surfaces). 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, restrictions on their size, 
placement, etc. 
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6.15 3D Color Buffer (Destination) Surfaces 
3D Color buffer surfaces are used to hold per-pixel color values for use in the 3D pipeline. Note that the 3D pipeline always 
requires a Color buffer to be defined. 

Refer to Non-Video Pixel/Texel Formats section in this chapter for details on the Color buffer pixel formats.  Refer to the 3D 
Instruction and 3D Rendering chapters for details on the usage of the Color Buffer. 

The Color buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 3DSTATE_BUFFER_INFO instruction.  
That buffer can be mapped to LM, SM (snooped or unsnooped) and can be linear or tiled.  When both the Depth and Color 
buffers are tiled, the respective Tile Walk directions must match. 

When a linear Color and a linear Depth buffers are used together: 
1. They may have different pitches, though both pitches must be a multiple of 32 bytes. 
2. They must be co-aligned with a 32-byte region. 

6.16 3D Depth Buffer Surfaces  

Depth buffer surfaces are used to hold per-pixel depth values and per-pixel stencil values for use in the 3D pipeline. Note that the 
3D pipeline does not require a Depth buffer to be allocated, though a Depth buffer is required to perform (non-trivial) Depth Test 
and Stencil Test operations.  

The following table summarizes the possible formats of the Depth buffer.  Refer to Depth Buffer Formats section in this chapter 
for details on the pixel formats.  Refer to the Windower and DataPort chapters for details on the usage of the Depth Buffer. 

Table 6-22. Depth Buffer Formats 

DepthBufferFormat / DepthComponent bpp Description 

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit 
stencil in lower byte of second DWord 

D32_FLOAT 32 32-bit floating point Z depth value 

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit 
stencil value in upper byte 

D16_UNORM   16 16-bit fixed point Z depth value 

The Depth buffer is specified via the 3DSTATE_DEPTH_BUFFER command.  See the description of that instruction in 
Windower for restrictions. 

6.17 3D Separate Stencil Buffer Surfaces [ILK+] 

Separate Stencil buffer surfaces are used to hold per-pixel stencil values for use in the 3D pipeline. Note that the 3D pipeline does 
not require a Stencil buffer to be allocated, though a Stencil buffer is required to perform (non-trivial) Stencil Test operations.  

The following table summarizes the possible formats of the Stencil buffer.  Refer to Stencil Buffer Formats section in this chapter 
for details on the pixel formats.  Refer to the Windower chapters for details on the usage of the Stencil Buffer. 
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Table 6-23. Depth Buffer Formats 

DepthBufferFormat / DepthComponent bpp Description 

S8_UINT 8 8-bit stencil value in a byte 

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command.  See the description of that instruction in 
Windower for restrictions. 

6.18 Surface Layout 

This section describes the formats of surfaces and data within the surfaces. 

6.18.1 Buffers 

A buffer is an array of structures.  Each structure contains up to 2048 bytes of elements.  Each element is a single surface format 
using one of the supported surface formats depending on how the surface is being accessed.  The surface pitch state for the 
surface specifies the size of each structure in bytes. 

The buffer is stored in memory contiguously with each element in the structure packed together, and the first element in the next 
structure immediately following the last element of the previous structure.  Buffers are supported only in linear memory. 
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6.18.2 1D Surfaces 

One-dimensional surfaces are identical to 2D surfaces with height of one.  Arrays of 1D surfaces are also supported.  Please refer 
to the 2D Surfaces section for details on how these surfaces are stored. 

6.18.3 2D Surfaces 

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced by a single base address. The 
base map and associated mipmaps are located within a single rectangular area of memory identified by the base address of the 
upper left corner and a pitch.   The base address references the upper left corner of the base map.  The pitch must be specified at 
least as large as the widest mip-map.  In some cases it must be wider; see the section on Minimum Pitch below. 

These surfaces may be overlapped in memory and must adhere to the following memory organization rules: 

• For non-compressed texture formats, each mipmap must start on an even row within the monolithic rectangular area.  For 
1-texel-high mipmaps, this may require a row of padding below the previous mipmap.  This restriction does not apply to 
any compressed texture formats:  i.e., each subsequent (lower-res) compressed mipmap is positioned directly below the 
previous mipmap. 

• Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte (DQWord) for tiled.  (Note 
that tiled mipmaps are not required to start at the left edge of a tile row). 

6.18.3.1 Computing MIP level sizes 

Map width and height specify the size of the largest MIP level (LOD 0).  Less detailed LOD level (i+1) sizes are determined by 
dividing the width and height of the current (i) LOD level by 2 and truncating to an integer (floor).  This is equivalent to shifting 
the width/height by 1 bit to the right and discarding the bit shifted off. The map height and width are clamped on the low side at 1. 

In equations, the width and height of an LOD “L” can be expressed as: 

( )( )
( )( )1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

 

6.18.3.2 Base Address for LOD Calculation 

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y are in units of texels, with 
the upper left corner of the base map at (0, 0).  The final step is to convert from Cartesian coordinates to linear addresses as 
documented at the bottom of this section. 

It is useful to think of the concept of “stepping” when considering where the next MIP level will be stored in rectangular memory 
space.  We either step down or step right when moving to the next higher LOD. 

• for MIPLAYOUT_RIGHT maps: 
o step right when moving from LOD 0 to LOD 1 
o step down for all of the other MIPs 

• for MIPLAYOUT_BELOW maps: 
o step down when moving from LOD 0 to LOD 1 
o step right when moving from LOD 1 to LOD 2 
o step down for all of the other MIPs 
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To account for the cache line alignment required, we define i and j as the width and height, respectively, of an alignment unit.  
This alignment unit is defined below.  We then define lower-case wL and hL as the padded width and height of LOD “L” as 
follows: 
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⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
Hceiljh

i
Wceiliw

L
L

L
L

*

*
 

Equations to compute the upper left corner of each MIP level are then as follows: 

for MIPLAYOUT_RIGHT  maps: 
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for MIPLAYOUT_BELOW maps: 

...
),(

),(
),(

),0(
)0,0(

32014

2013

012

01

0

hhhwLOD
hhwLOD

hwLOD
hLOD

LOD

++=
+=

=
=
=

 



 

Doc Ref #: IHD_OS_V1Pt1_3_10   113 

6.18.3.3 Minimum Pitch 

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place the map within.  This is 
approximately equal to 1.5x the pitch required by the base map, with possible adjustments made for cache line alignment.  For 
MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, the minimum pitch required is equal to that required by the base 
(LOD 0) map. 

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for MIPLAYOUT_RIGHT 
maps.  This ensures that enough pitch is available, and since it is restricted to MIPLAYOUT_RIGHT maps, not much memory is 
wasted.  It is up to the driver (hardware independent) whether to use this simple determination of pitch or a more complex one.  

6.18.3.4 Alignment Unit Size 

The following table indicates the i and j values that should be used for each map format.  Note that the compressed formats are 
padded to a full compression cell. 

Table 6-24. Alignment Units for Texture Maps 

surface format alignment unit width “i” alignment unit height “j” 

YUV 4:2:2 formats 4 * see below 

BC1-5 4 4 

FXT1 8 4 

all other formats 4 * see below 

* For these formats, the vertical alignment factor “j” is determined as follows: 

• For [All: 
o j = 4 for any separate stencil buffer surface ([DevILK] only) 
o j = 2 for all other surfaces 
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6.18.3.5 Cartesian to Linear Address Conversion 

A set of variables are defined in addition to the i and j defined above. 

• b = bytes per texel of the native map format (0.5 for FXT1, and 4-bit surface format, 2.0 for YUV 4:2:2, others aligned to 
surface format) 

• t = texel rows / memory row (4 for FXT1, 1 for all other formats) 
• p = pitch in bytes (equal to pitch in dwords * 4) 
• B = base address in bytes (address of texel 0,0 of the base map) 
• x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is always a multiple of i and y is a 

multiple of j) 
• A = linear address in bytes 

xbt
t
ypBA ++=  

This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line alignment 
requirements). 

6.18.3.6 Compressed  Mipmap Layout 

Mipmaps of textures using compressed (FXT) texel formats are also stored in a monolithic format.  The compressed mipmaps are 
stored in a similar fashion to uncompressed mipmaps, with each block of source (uncompressed) texels represented by a 1 or 2 
QWord compressed block.  The compressed blocks occupy the same logical positions as the texels they represent, where each row 
of compressed blocks represent a 4-high row of uncompressed texels.  The format of the blocks is preserved, i.e., there is no 
“intermediate” format as required on some other devices. 

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps: 

• Mipmaps are not required to start on even rows, therefore each successive mip level is located on the texel row immediately 
below the last row of the previous mip level.  Pad rows are neither required nor allowed. 

• The dimensions of the mip maps are first determined by applying the sizing algorithm presented in Non-Power-of-Two 
Mipmaps above.  Then, if necessary, they are padded out to compression block boundaries. 

6.18.3.7 Surface Arrays 

6.18.3.7.1 For all surface other than separate stencil buffer 

Both 1D and 2D surfaces can be specified as an array.  The only difference in the surface state is the presence of a depth value 
greater than one, indicating multiple array “slices”.   

A value QPitch is defined which indicates the worst-case height for one slice in the texture array.  This QPitch is multiplied by 
the array index to and added to the vertical component of the address to determine the vertical component of the address for that 
slice.  Within the slice, the map is stored identically to a MIPLAYOUT_BELOW 2D surface.  MIPLAYOUT_BELOW is the only 
format supported by 1D non-arrays and both 2D and 1D arrays, the programming of the MIP Map Layout Mode state variable is 
ignored when using a TextureArray. 
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The following equation is used for surface formats other than compressed textures: 

( ) PitchjhhQPitch *1110 ++=  

The input variables in this equation are defined in sections above. 

The equation for compressed textures (BC* and FXT1 surface formats) follows: 

( )
Pitch

jhh
QPitch *

4
1110 ++

=  

6.18.3.7.2 For separate stencil buffer [DevILK] 

The separate stencil buffer does not support mip mapping, thus the storage for LODs other than LOD 0 is not needed.  The 
following QPitch equation applies only to the separate stencil buffer: 

PitchhQPitch *0=  

6.18.3.7.3 8.19.4.8.1 MCS Surface 

The MCS surface consists of one element per pixel, with the element size being an 8 bit unsigned integer value for 4x 
multisampled surfaces and a 32 bit unsigned integer value for 8x multisampled surfaces.  Each field within the element indicates 
which sample slice (SS) the sample resides on. 

6.18.3.8 4x MCS 

The 4x MCS is 8 bits per pixel.  The 8 bits are encoded as follows: 
7:6 5:4 3:2 1:0 

sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored.  An MCS value of 0x00 indicates that all 
four samples are stored in sample slice 0 (thus all have the same color).  This is the fully compressed case.  An MCS value of 0xff 
indicates that all samples in the pixel are in the clear state, and none of the sample slices are valid.  The pixel’s color must be 
replaced with the surface’s clear value. 

6.18.3.9 8x MCS 

Extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 samples, or 24 bits per pixel.  The 24-bit 
MCS value per pixel is placed in a 32-bit footprint, with the upper 8 bits unused as shown below. 

 
31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0 

reserved 
(MBZ) 

sample 7 
SS 

sample 6 
SS 

sample 5 
SS 

sample 4 
SS 

sample 3 
SS 

sample 2 
SS 

sample 1 
SS 

sample 0 
SS 

Other than this, the 8x algorithm is the same as the 4x algorithm.  The MCS value indicating clear state is 0x00ffffff. 
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6.18.3.9.1 MSS Surface 

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching the pixel dimensions of 
the logical multisampled surface.  The number of array slices in the physical surface is 4 or 8 times that of the logical surface 
(depending on the number of multisamples).  Sample slices belonging to the same logical surface array slice are stored in adjacent 
physical slices.  The sampling engine ld2dss message gives direct access to a specific sample slice. 

6.18.4 Cube Surfaces 

The 3D pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the origin of a 3D coordinate 
system aligned to the cube faces.  These maps can be used to supply texel (color/alpha) data of the environment in any direction 
from the enclosed origin, where the direction is supplied as a 3D “vector” texture coordinate.  These cube maps can also be 
mipmapped. 

Each texture map level is represented as a group of  six, square cube face texture surfaces.  The faces are identified by their 
relationship to the 3D texture coordinate system.   The subsections below describe the cube maps as described at the API as well 
as the memory layout dictated by the hardware. 

6.18.4.1 Hardware Cube Map Layout 

6.18.4.1.1 [Pre-Dev ILK] 

The cube face textures are stored in the same way as 3D surfaces are stored (see section 0 for details).  For cube surfaces, 
however, the depth is equal to the number of faces (always 6) and is not reduced for each MIP.  The equation for DL is replaced 
with the following for cube surfaces: 

6=LD  

The “q” coordinate is replaced with the face identifier as follows: 

 
“q” 

coordinate 
face

0 +x 
1 -x 
2 +y 
3 -y 
4 +z 
5 -z 
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6.18.4.1.2 [Dev ILK+] 

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 6.18.3 for details).  For cube 
surfaces, the depth (array instances) is equal to 6.  The array index “q” corresponds to the face according to the following table: 

 
“q” 

coordinate 
face

0 +x 
1 -x 
2 +y 
3 -y 
4 +z 
5 -z 

6.18.4.2 Restrictions 

• The cube map memory layout is the same whether or not the cube map is mip-mapped, and whether or not all six faces are 
“enabled”, though the memory backing disabled faces or non-supplied levels can be used by software for other purposes. 

• The cube map faces all share the same Surface Format  
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6.18.5 3D Surfaces 

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure known as a Texture3D 
(volume) texture.  A volume texture map consists of many planes of 2D texture maps.  See Sampler for a description of how 
volume textures are used. 

Figure 6-5. Volume Texture Map 
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Note that the number of planes defined at each successive mip level is halved.   Volumetric texture maps are stored as follows.  
All of the LOD=0 q-planes are stacked vertically, then below that, the LOD=1 q-planes are stacked two-wide, then the LOD=2 q-
planes are stacked four-wide below that, and so on. 

The width, height, and depth of LOD “L” are as follows: 

( )( )
( )( )1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

 

This is the same as for a regular texture.  For volume textures we add: 

( )( )1:?0 LdepthLdepthDL >>>>>=  

Cache-line aligned width and height are as follows, with i and j being a function of the map format as shown in Table 6-24. 
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Hceiljh
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L

L
L
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Note that it is not necessary to cache-line align in the “depth” dimension (i.e. lower case “d”). 

The following equations for LODL,q give the base address Cartesian coordinates for the map at LOD L and depth q. 
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These values are then used as “base addresses” and the 2D MIP Map equations are used to compute the location within each 
LOD/q map. 

6.18.5.1 Minimum Pitch 

The minimum pitch required to store the 3D map may in some cases be greater than the minimum pitch required by the LOD=0 
map.  This is due to cache line alignment requirements that may impact some of the MIP levels requiring additional spacing in the 
horizontal direction. 

6.19 Surface Padding Requirements 

6.19.1 Sampling Engine Surfaces 

The sampling engine accesses texels outside of the surface if they are contained in the same cache line as texels that are within the 
surface.  These texels will not participate in any calculation performed by the sampling engine and will not affect the result of any 
sampling engine operation, however if these texels lie outside of defined pages in the SNBT, a SNBT error will result when the 
cache line is accessed.  In order to avoid these SNBT errors, “padding” at the bottom and right side of a sampling engine surface 
is sometimes necessary. 

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned.  All pages included in the 
cache lines that are part of the surface must map to valid SNBT entries to avoid errors.  To determine the necessary padding on 
the bottom and right side of the surface, refer to the table in Section 6.18.3.4 for the i and j parameters for the surface format in 
use.  The surface must then be extended to the next multiple of the alignment unit size in each dimension, and all texels contained 
in this extended surface must have valid SNBT entries. 

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 and j=2.  In this case, the 
extended surface would be 16 by 10.  Note that these calculations are done in texels, and must be converted to bytes based on the 
surface format being used to determine whether additional pages need to be defined. 

For buffers, which have no inherent “height,” padding requirements are different.  A buffer must be padded to the next multiple of 
256 array elements, with an additional 16 bytes added beyond that to account for the L1 cache line. 

For cube surfaces, an additional two rows of padding are required at the bottom of the surface.  This must be ensured regardless of 
whether the surface is stored tiled or linear.  This is due to the potential rotation of cache line orientation from memory to cache. 
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For compressed textures (BC* and FXT1 surface formats), padding at the bottom of the surface is to an even compressed row, 
which is equal to a multiple of 8 uncompressed texel rows.  Thus, for padding purposes, these surfaces behave as if j = 8 only for 
surface padding purposes.  The value of 4 for j still applies for mip level alignment and QPitch calculation. 

For YUV, 96 bpt, and 48 bpt surface formats, additional padding is required.  These surfaces require an extra row plus 16 bytes of 
padding at the bottom in addition to the general padding requirements. 

6.19.2 Render Target and Media Surfaces 

The data port accesses data (pixels) outside of the surface if they are contained in the same cache request as pixels that are within 
the surface.  These pixels will not be returned by the requesting message, however if these pixels lie outside of defined pages in 
the SNBT, a SNBT error will result when the cache request is processed.  In order to avoid these SNBT errors, “padding” at the 
bottom of the surface is sometimes necessary. 

If the surface contains an odd number of rows of data, a final row below the surface must be allocated.  If the surface will be 
accessed in field mode (Vertical Stride = 1), enough additional rows below the surface must be allocated to make the extended 
surface height (including the padding) a multiple of 4. 


