

34 Doc Ref #: IHD_OS_V1Pt1_3_10

3.5.4 CONSTANT_BUFFER

CONSTANT_BUFFER
Project: All LenSNBh Bias: 2
The CONSTANT_BUFFER packet is used to define the memory address of data that will be read by the CS unit and
stored into the current CURBE entry.

Programming Notes:

• Issuing a CONSTANT_BUFFER packet with Valid set when the CS unit does not have any CURBE entries
allocated in the URB results in UNDEFINED behavior.

• Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore
software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in
the pipeline.

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 02h CONSTANT_BUFFER Format: OpCode

15:9 Reserved Project: All Format: MBZ
8 Valid

Project: All
Format: Enable
If TRUE, a Constant Buffer will be defined and possibly used in the pipeline (depending on
FF unit state programming). The Buffer Starting Address and Buffer LenSNBh fields
are valid.

If FALSE, the Constant Buffer becomes undefined and unused. The Buffer Starting
Address and Buffer LenSNBh fields are ignored. The FF unit state descriptors must not
specify the use of CURBE data, or behavior is UNDEFINED.

7:0 DWord LenSNBh
Default Value: 0h Excludes DWord (0,1)
Format: =n Total LenSNBh - 2
Project: All

Doc Ref #: IHD_OS_V1Pt1_3_10 35

CONSTANT_BUFFER
1 31:6 Buffer Starting Address

Project: All
Format: GeneralStateOffset[31:6] or

GraphicsAddress[31:6] (see below)

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is clear
(enabled), this field defines the location of the memory-resident constant data via a 64Byte-
granular offset from the General State Base Address.

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is set
(disabled), this field defines the location of the memory-resident constant data via a 64Byte-
granular Graphics Address (not offset).

Programming Notes

Constant Buffers can only be allocated in linear (not tiled) graphics memory

Constant Buffers can only be mapped to Main Memory (UC)

5:0 Buffer LenSNBh
Project: All
Format: U6 Count-1 in 512-bit units
If Valid is set, this field specifies the lenSNBh of the constant data to be loaded from
memory into the CURBE in 512-bit units (minus one). The lenSNBh must be less than or
equal to the URB Entry Allocation Size specified via the CS_URB_STATE command.

36 Doc Ref #: IHD_OS_V1Pt1_3_10

3.5.5 MEMORY_OBJECT_CONTROL_STATE

This 4-bit field is used in various state commands and indirect state objects to define MLC/LLC cacheability, graphics data type,
and encryption attributes for memory objects.

Bit De scription

3 Encrypted Data

This field controls whether data is decrypted while being read. This field is ignored for
writes.

Format = Enable

2 Graphics Data Type (GFDT)

This field contains the GFDT bit for this surface when writes occur. GFDT can also be
set by the SNBT. The effective GFDT is the logical OR of this field with the GFDT from
the SNBT entry. This field is ignored for reads.

The GFDT bit is stored in the LLC and selective cache flushing of lines with GFDT set is
supported. It is intended to be set on displayable data, which enables efficient flushing
of data to be displayed after rendering, since display engine does not snoop the
rendering caches. Note that MLC would need to be completely flushed as it does not
allow selective flushing.

Format = U1

1:0 Cacheability Control

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).

.

Format = U2 enumerated type

00: use cacheability control bits from SNBT entry

01: data is not cached in LLC or MLC

10: data is cached in LLC but not MLC

11: data is cached in both LLC and MLC

Doc Ref #: IHD_OS_V1Pt1_3_10 37

3.6 Memory Access Indirection

The GPE supports the indirection of certain graphics (SNBT-mapped) memory accesses. This support comes in the form of two
base address state variables used in certain memory address computations with the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory structures after command
buffers have been generated but prior to the their submittal for execution. For example, as the driver builds the command stream
it could append pipeline state descriptors, kernel binaries, etc. to a general state buffer. References to the individual items would
be inserting in the command buffers as offsets from the base address of the state buffer. The state buffer could then be freely
relocated prior to command buffer execution, with the driver only needing to specify the final base address of the state buffer.
Two base addresses are provided to permit surface-related state (binding tables, surface state tables) to be maintained in a state
buffer separate from the general state buffer.

While the use of these base addresses is unconditional, the indirection can be effectively disabled by setting the base addresses to
zero. The following table lists the various GPE memory access paths and which base address (if any) is relevant.

38 Doc Ref #: IHD_OS_V1Pt1_3_10

Table 3-2. Base Address Utilization

Base Address Used Memory Accesses

CS unit reads from CURBE Constant Buffers via CONSTANT_BUFFER when
INSTPM< CONSTANT_BUFFER Address Offset Disable> is clear (enabled).

3D Pipeline FF state read by the 3D FF units, as referenced by state pointers
passed via 3DSTATE_PIPELINE_POINTERS.

Media pipeline FF state, as referenced by state pointers passed via
MEDIA_PIPELINE_POINTERS

General State Base Address

DataPort memory accesses resulting from ‘stateless’ DataPort Read/Write
requests. See DataPort for a definition of the ‘stateless’ form of requests.

Sampler reads of SAMPLER_STATE data and associated
SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

General State Base Address

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Normal EU instruction stream (non-system routine) General State Base Address
[Pre-DevILK]

Instruction Base Address
[DevILK] only

System routine EU instruction stream (starting address = SIP)

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT
pointers passed via 3DSTATE_BINDING_TABLE_POINTERS

Surface State Base Address

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object Base Address MEDIA_OBJECT Indirect Data accessed by the CS unit .

CS unit reads from Ring Buffers, Batch Buffers

CS unit reads from CURBE Constant Buffers via CONSTANT_BUFFER when
INSTPM< CONSTANT_BUFFER Address Offset Disable> is set (disabled).

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accesses except ‘stateless’ DataPort Read/Write
requests (e.g., RT accesses.) See Data Port for a definition of the ‘stateless’
form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

None

SNBT-mapped accesses not included above (i.e., default)

Doc Ref #: IHD_OS_V1Pt1_3_10 39

The following notation is used in the BSpec to distinguish between addresses and offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a
SNBT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped
by a SNBT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State Base
Address value, the result of which is interpreted as a virtual graphics memory byte
address (mapped by a SNBT)

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State Base
Address value, the result of which is interpreted as a virtual graphics memory byte
address (mapped by a SNBT)

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base Address
value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a SNBT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base
Address value, the result of which is interpreted as a virtual graphics memory byte
address (mapped by a SNBT)

40 Doc Ref #: IHD_OS_V1Pt1_3_10

3.6.1 STATE_ BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect object
accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:

• The following commands must be reissued following any change to the base addresses:
o 3DSTATE_PIPELINE_POINTERS
o 3DSTATE_BINDING_TABLE_POINTERS
o MEDIA_STATE_POINTERS.

• Execution of this command causes a full pipeline flush, thus its use should be minimized for higher performance.

3.6.1.1 [Pre-DevILK]

STATE_BASE_ADDRESS
Project: [Pre-DevILK] LenSNBh Bias: 2
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect
object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:

• The following commands must be reissued following any change to the base addresses:
o 3DSTATE_PIPELINE_POINTERS
o 3DSTATE_BINDING_TABLE_POINTERS
o MEDIA_STATE_POINTERS.

• MI_FLUSH command with ISC invalidate bit set should always be programmed prior to
STATE_BASE_ADDRESS command.

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 01h STATE_BASE_ADDRESS Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord LenSNBh

Default Value: 4h Excludes DWord (0,1)
Format: =n Total LenSNBh - 2
Project: All

Doc Ref #: IHD_OS_V1Pt1_3_10 41

STATE_BASE_ADDRESS
1 31:12 General State Base Address

Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for general state accesses. See Table 3-2 for
details on where this base address is used.

11:1 Reserved Project: All Format: MBZ
0 General State Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

2 31:12 Surface State Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for binding table and surface state accesses.
See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ
0 Surface State Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

3 31:12 Indirect Object Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT
command. See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

42 Doc Ref #: IHD_OS_V1Pt1_3_10

STATE_BASE_ADDRESS
0 Indirect Object Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

4 31:12 General State Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for general
state accesses. This includes all accesses that are offset from General State Base
Address (see Table 3-2). Read accesses from this address and beyond will return
UNDEFINED values. Data port writes to this address and beyond will be “dropped on the
floor” (all data channels will be disabled so no writes occur). Setting this field to 0 will
cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved Project: All Format: MBZ
0 General State Access Upper Bound Modify Enable

Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

5 31:12 Indirect Object Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed
at this address and beyond will appear to be 0. Setting this field to 0 will cause this range
check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt1_3_10 43

STATE_BASE_ADDRESS
0 Indirect Object Access Upper Bound Modify Enable

Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

3.6.1.2 [DevILK]

STATE_BASE_ADDRESS
Project: [DevILK] LenSNBh Bias: 2
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media indirect
object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:

• The following commands must be reissued following any change to the base addresses:
o 3DSTATE_PIPELINE_POINTERS
o 3DSTATE_BINDING_TABLE_POINTERS
o MEDIA_STATE_POINTERS.

• Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 01h STATE_BASE_ADDRESS Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord LenSNBh

Default Value: 6h Excludes DWord (0,1)
Format: =n Total LenSNBh - 2
Project: All

44 Doc Ref #: IHD_OS_V1Pt1_3_10

STATE_BASE_ADDRESS
1 31:12 General State Base Address

Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for general state accesses. See Table 3-2 for
details on where this base address is used.

11:1 Reserved Project: All Format: MBZ
0 General State Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

2 31:12 Surface State Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for binding table and surface state accesses.
See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ
0 Surface State Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

3 31:12 Indirect Object Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT
command. See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt1_3_10 45

STATE_BASE_ADDRESS
0 Indirect Object Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

4 31:12 Instruction Base Address
Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned base address for all EU instruction accesses.

11:1 Reserved Project: All Format: MBZ
0 Instruction Base Address Modify Enable

Project: All
Format: Enable
The address in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All
5 31:12 General State Access Upper Bound

Project: All
Format: GraphicsAddress[31:12]
Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for general
state accesses. This includes all accesses that are offset from General State Base
Address (see Table 3-2). Read accesses from this address and beyond will return
UNDEFINED values. Data port writes to this address and beyond will be “dropped on the
floor” (all data channels will be disabled so no writes occur). Setting this field to 0 will
cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved Project: All Format: MBZ
0 General State Access Upper Bound Modify Enable

Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

46 Doc Ref #: IHD_OS_V1Pt1_3_10

STATE_BASE_ADDRESS
6 31:12 Indirect Object Access Upper Bound

Project: All
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed
at this address and beyond will appear to be 0. Setting this field to 0 will cause this range
check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved Project: All Format: MBZ
0 Indirect Object Access Upper Bound Modify Enable

Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

7 31:12 Instruction Access Upper Bound
Project: All
Format: GraphicsAddress[31:12]
This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an EU instruction. Instruction data accessed at this address and beyond will
return UNDEFINED values. Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the Instruction Base Address.

11:1 Reserved Project: All Format: MBZ
0 Instruction Access Upper Bound Modify Enable

Project: All
Format: Enable
The bound in this dword is updated only when this bit is set.

Value Na me Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

Doc Ref #: IHD_OS_V1Pt1_3_10 47

3.7 State Invalidation ([DevCTG+])

The STATE_POINTER_INVALIDATE command is provided as an optional mechanism to invalidate 3D/Media state pointers
and pointers to constant data. This is sometimes desirable to prevent prefetching of state between the time the pointed-to state is
no longer needed, and the time the commands above are re-issued to point to new state.

3.7.1 STATE_ POINTER_INVALIDATE ([DevCTG+])

STATE_POINTER_INVALIDATE
Project: [DevCTG], [DevILK] LenSNBh Bias: 1

The STATE_POINTER_INVALIDATE command marks the state pointers of the selected type(s) as invalid. The
corresponding state pointer command must be issued again prior to attempting any rendering operations that depend on
the state whose pointers have been marked as invalid.

The pointers initialized by the following commands are (potentially) invalidated by this command:
• 3DSTATE_PIPELINE_POINTERS
• 3DSTATE_CC_POINTERS
• CONSTANT_BUFFER
• MEDIA_STATE_POINTERS

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 1h GFXPIPE_SINGLE_DW Format: OpCode

26:24 3D Command Opcode
Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 02h STATE_POINTER_INVALIDATE Format: OpCode

15:3 Reserved Project: All Format: MBZ
2 Pipelined State Pointers Invalidate

Project: All
Format: Invalidate Enable
The pointers initialized with the last 3DSTATE_PIPELINED_POINTERS are marked as
invalid if this bit is set. Said pointers are unaffected if this bit is clear.

1 Constant Buffer Invalidate
Project: All
Format: Invalidate Enable
The pointer initialized with the last CONSTANT_BUFFER is marked as invalid. Said pointer
is unaffected if this bit is clear.

48 Doc Ref #: IHD_OS_V1Pt1_3_10

STATE_POINTER_INVALIDATE
0 Media State Pointers Invalidate

Project: All
Format: Invalidate Enable
The pointers initialized with the last MEDIA_STATE_POINTERS are marked as invalid.
Said pointers are unaffected if this bit is clear.

Doc Ref #: IHD_OS_V1Pt1_3_10 49

3.8 Instruction and State Prefetch

The STATE_PREFETCH command is provided strictly as an optional mechanism to possibly enhance pipeline performance by
prefetching data into the GPE’s Instruction and State Cache (ISC).

3.8.1 STATE_ PREFETCH

STATE_PREFETCH
Project: All LenSNBh Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some
experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into the
GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function indirect state data.
While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this command may be
used to prefetch data not automatically prefetched, such as: 3D viewport state; Media pipeline Interface Descriptors;
EU kernel instructions.

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 03h STATE_PREFETCH Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord LenSNBh

Default Value: 0h Excludes DWord (0,1)
Format: =n Total LenSNBh - 2
Project: All

1 31:6 Prefetch Pointer
Project: All
Format: GraphicsAddress[31:6]
Specifies the 64-byte aligned address to start the prefetch from. This pointer is an absolute
virtual address, it is not relative to any base pointer.

5:3 Reserved Project: All Format: MBZ

50 Doc Ref #: IHD_OS_V1Pt1_3_10

STATE_PREFETCH
2:0 Prefetch Count

Project: All
Format: U3 count of cache lines (minus one)
Range [0,7] indicating a count of [1,8]
Indicates the number of contiguous 64-byte cache lines that will be prefetched.

Doc Ref #: IHD_OS_V1Pt1_3_10 51

3.9 System Thread Configuration

3.9.1 STATE_ SIP

STATE_SIP
Project: All LenSNBh Bias: 2
The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all threads
in execution.

DWord Bit Description

0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 02h STATE_SIP Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord LenSNBh

Default Value: 0h Excludes DWord (0,1)
Format: =n Total LenSNBh - 2
Project: All

1 31:4 System Instruction Pointer (SIP)
Project: [Pre-DevILK]
Format: General StateOffset[31:4]
Specifies the instruction address of the system routine associated with the current context
as a 128-bit granular offset from the General State Base Address. SIP is shared by all
threads in execution. The address specifies the double quadword aligned instruction
location.

Errata De scription Project

BWT007 Instructions pointed at by offsets from General State Base
must be contained within 32-bit physical address space
(that is, must map to memory pages under 4G.)

[DevBW-A]

31:4 System Instruction Pointer (SIP)

Project: [DevILK+]
Format: Instruction Base Offset[31:4]
Specifies the instruction address of the system routine associated with the current context
as a 128-bit granular offset from the Instruction Base Address. SIP is shared by all
threads in execution. The address specifies the double quadword aligned instruction
location.

3:0 Reserved Project: All Format: MBZ

52 Doc Ref #: IHD_OS_V1Pt1_3_10

3.10 Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection describes these restrictions
along with some explanation of why they exist. Refer to the various command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be used to perform activity within the GPE.

B6680-01

MEDIA_STATE_POINTERS3DSTATE_PIPELINE_POINTERS

URB_FENCEURB_FENCE

CONSTANT_BUFFERCONSTANT_BUFFER

MEDIA_OBJECT3DPRIMITIVE / 3DCONTROL

MI_FLUSH

PIPELINE_SELECT

CS_URB_STATE

Pipeline?
3D Media

Note: Common or Pipeline-
specific state-setting
commands can be issued
along any paths from this
point down

3.10.1 PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before switching to a different
pipeline via use of the PIPELINE_SELECT command. Refer to Section 3.3 for details on the PIPELINE_SELECT command.

3.10.2 PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor does it rely on any other
pipeline state. It is intended to be used on both the 3D pipe and the Media pipe. It has special optimizations to support the
pipelining capability in the 3D pipe which do not apply to the Media pipe.

Doc Ref #: IHD_OS_V1Pt1_3_10 53

3.10.3 URB-Related State-Setting Commands

Several commands are used (among other things) to set state variables used in URB entry allocation --- specifically, the Number
of URB Entries and the URB Entry Allocation Size state variables associated with various pipeline units. These state variables
must be set-up prior to the issuing of a URB_FENCE command. (See the subsection on URB_FENCE below).

CS_URB_STATE (only) specifies these state variables for the common CS FF unit. 3DSTATE_PIPELINED_POINTERs sets
the state variables for FF units in the 3D pipeline, and MEDIA_STATE_POINTERS sets them for the Media pipeline.
Depending on which pipeline is currently active, only one of these commands needs to be used. Note that these commands can
also be reissued at a later time to change other state variables, though if a change is made to (a) any Number of URB Entries and
the URB Entry Allocation Size state variables or (b) the Maximum Number of Threads state for the GS or CLIP FF units, a
URB_FENCE command must follow.

3.10.4 Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This state is comprised of CS FF unit
state, non-pipelined global state (EU, etc.), and Sampler shared-function state.

• STATE_BASE_ADDRESS
• STATE_SIP
• 3DSTATE_SAMPLER_PALETTE_LOAD
• 3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior to initiating activity within a pipeline (i.e.,
3DPRIMITIVE or MEDIA_OBJECT).

54 Doc Ref #: IHD_OS_V1Pt1_3_10

3.10.5 3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D pipeline.

• 3DSTATE_PIPELINED_POINTERS
• 3DSTATE_BINDING_TABLE_POINTERS
• 3DSTATE_VERTEX_BUFFERS
• 3DSTATE_VERTEX_ELEMENTS
• 3DSTATE_INDEX_BUFFERS
• 3DSTATE_VF_STATISTICS
• 3DSTATE_DRAWING_RECTANGLE
• 3DSTATE_CONSTANT_COLOR
• 3DSTATE_DEPTH_BUFFER
• 3DSTATE_POLY_STIPPLE_OFFSET
• 3DSTATE_POLY_STIPPLE_PATTERN
• 3DSTATE_LINE_STIPPLE
• 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing 3DPRIMITIVE.

3.10.6 Media Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the Media pipeline.

• MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing MEDIA_OBJECT.

Doc Ref #: IHD_OS_V1Pt1_3_10 55

3.10.7 URB_FENCE (URB Fencing & Entry Allocation)

URB_FENCE command is used to initiate URB entry deallocation/allocation processes within pipeline FF units. The
URB_FENCE command is first processed by the CS FF unit, and is then directed down the currently selected pipeline to the FF
units comprising that pipeline.

As the FF units receive the URB_FENCE command, a URB entry deallocation/allocation process with be initiated if (a) the FF
unit is currently enabled (note that some cannot be disabled) and (b) the ModifyEnable bit associated with that FF unit’s Fence
value is set. If these conditions are met, the deallocation of the FF unit’s currently-allocated URB entries (if any) commences.
(Implementation Note: For better performance, this deallocation proceeds in parallel with allocation of new handles).

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore software must
subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline.

The allocation of new handles (if any) for the FF unit then commences. The parameters used to perform this allocation come
from (a) the URB_FENCE Fence values, and (b) the relevant URB entry state associated with the FF unit: specifically, the
Number of URB Entries and the URB Entry Allocation Size. For the CS unit, this state is programmed via CS_URB_STATE,
while the other FF units receive this state indirectly via PIPELINED_STATE_POINTERS or MEDIA_STATE_POINTERS
commands.

Although a FF unit’s allocation process relies on it’s URB Fence as well as the relevant FF unit pipelined state, only the
URB_FENCE command initiates URB entry deallocation/allocation. This imposes the following restriction: If a change is made
to (a) the Number of URB Entries or URB Entry Allocation Size state for a given FF unit or (b) the Maximum Number of
Threads state for the GS or CLIP FF units, a URB_FENCE command specifying a valid URB Fence state for that FF unit must
be subsequently issued – at some point prior to the next CONSTANT_BUFFER, 3DPRIMITIVE (if using the 3D pipeline) or
MEDIA_OBJECT (if using the Media pipeline). It is invalid to change Number of URB Entries or URB Entry Allocation Size
state for an enabled FF units without also issuing a subsequent URB_FENCE command specifying a valid Fence valid for that FF
unit.

It is valid to change a FF unit’s Fence value without specifying a change to its Number of URB Entries or URB Entry
Allocation Size state, though the values must be self-consistent.

56 Doc Ref #: IHD_OS_V1Pt1_3_10

3.10.8 CONSTANT_BUFFER (CURBE Load)

The CONSTANT_BUFFER command is used to load constant data into the CURBE URB entries owned by the CS unit. In order
to write into the URB, CS URB fencing and allocation must have been established. Therefore, CONSTANT_BUFFER can only
be issued after CS_URB_STATE and URB_FENCE commands have been issued, and prior to any other pipeline processing (i.e.,
3DPRIMITIVE or MEDIA_OBJECT). See the definition of CONSTANT_BUFFER for more details.

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore software must
subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline.

3.10.9 3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS) needs to be valid.
Therefore the commands used to set this state need to have been issued at some point prior to the issue of 3DPRIMITIVE.

3.10.10 MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state) needs to be valid.
Therefore the commands used to set this state need to have been issued at some point prior to the issue of MEDIA_OBJECT.

3.11 Video Command Streamer (VCS)
VCS (Video Command Streamer) unit is primarily served as the software programming interface between the O/S driver and the
MFD Engine. It is responsible for fetching, decoding, and dispatching of data packets (Media Commands with the header DW
removed) to the front end interface module of Video Engine.

Its logic functions include

• MMIO register programming interface.
• DMA action for fetching of run lists and ring data from memory.
• Management of the Head pointer for the Ring Buffer.
• Decode of ring data and sending it to the appropriate destination
• Handling of user interrupts and ring context switch interrupt.
• Flushing the Video Engine
• Handle NOP

The register programming (RM) bus is a dword interface bus that is driven by the Gx Command Streamer. The VCS unit will
only claim memory mapped I/O cycles that are targeted to its range of 0x4000 to 0x4FFFF. The Gx and Video Engines use
semaphore to synchronize their operations.

Any interaction and control protocols between the VCS and Gx CS in IronLake will remain the same as in Cantiga. But in
Gesher, VCS will operate completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped register write cycle. The
DMA inside VCS is kicked off. The DMA fetches commands from memory based on the starting address and head pointer. The
DMA requests cache lines from memory (one cacheline CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep)
for data coming back from memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA

Doc Ref #: IHD_OS_V1Pt1_3_10 57

increments the head pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes equal to
the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header dword packet. Based on
the encoding in the header packet, the command may be targeted towards AVC/VC1/MPEG2 engine or the command parser.
After execution of every command, the actual head pointer is updated. The ring is considered empty when the head pointer
becomes equal to the tail pointer.

58 Doc Ref #: IHD_OS_V1Pt1_3_10

4. Graphics Command Formats

4.1 Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the header DWord. The
header contains the only field common to all commands -- the client field that determines the device unit that will process the
command data. The Command Parser examines the client field of each command to condition the further processing of the
command and route the command data accordingly.

Some Genx Devices include two Command Parsers, each controlling an independent processing engine. These will be referred to
in this document as the Render Command Parser (RCP) and the Video Codec Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1 Miscellaneous (includes Trusted Ops)

2 2D Rendering (xxx_BLT_xxx)

3 Graphics Pipeline (3D and Media)

4-7 Reserved

Valid client values for the Video Codec Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1-2 Reserved

3 AVC and VC1 State and Object Commands

4-7 Reserved

On [DevBW] and [DevCL], no Video Codec Command Parser is present.

Graphics commands vary in lenSNBh, though are always multiples of DWords. The lenSNBh of a command is either:

Implied by the client/opcode
Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows how much data to

copy/process)
Variable, with a field in the header indicating the total lenSNBh of the command

Doc Ref #: IHD_OS_V1Pt1_3_10 59

Note that command sequences require QWord alignment and padding to QWord lenSNBh to be placed in Ring and Batch
Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a diagram of the formats of
the header DWords for all commands. Following that is a list of command mnemonics by client type.

4.1.1 Memor y Interface Commands
Memory Interface (MI) commands are basically those commands which do not require processing by the 2D or 3D
Rendering/Mapping engines. The functions performed by these commands include:

Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)

Hardware synchronization (e.g., flush, wait-for-event)
Software synchronization (e.g., Store DWORD, report head)
Graphics buffer definition (e.g., Display buffer, Overlay buffer)
Miscellaneous functions

Refer to the Memory Interface Commands chapter for a description of these commands.

4.1.2 2D Commands

The 2D commands include various flavors of Blt operations, along with commands to set up Blt engine state without actually
performing a Blt. Most commands are of fixed lenSNBh, though there are a few commands that include a variable amount of
"inline" data at the end of the command.

Refer to the 2D Commands chapter for a description of these commands.

4.1.3 3D/Media Commands

The 3D/Media commands are used to program the graphics pipelines for 3D or media operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter for a description of the
media-related state and object commands.

4.1.4 Video Codec Commands

4.1.4.1 AVC Commands [DevCTG/DevILK]

The AVC commands are used to program the AVC Bit-Stream Serial Decoder attached to the Video Codec Command Parser.
See the AVC BSD chapter for a description of these commands.

4.1.4.2 VC1 Commands [DevCTG/DevILK]

The VC1 commands are used to program the VC1 Bit-Stream Serial Decoder attached to the Video Codec Command Parser. See
the VC1 BSD chapter for a description of these commands.

60 Doc Ref #: IHD_OS_V1Pt1_3_10

4.1.5 Command Header

Table 4-1. RCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode
00h – NOP
0Xh – Single DWord Commands
1Xh – Two+ DWord Commands
2Xh – Store Data Commands
3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count
Command Dependent Data

5:0 – DWord Count
5:0 – DWord Count
5:0 – DWord Count

Reserved 001 Opcode – 11111 23:19
Sub Opcode
00h – 01h

18:16

Re-
served

15:0

DWord Count

2D 010 Opcode Command Dependent Data
4:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord
Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data DWord
Count

Reserved 011 00 Opcode – 010 – 111

Single Dword
Command

011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword
Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord
Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data DWord
Count

PIPE_Control 011 11 Opcode – 010 Data DWord
Count

3DPrimitive 011 11 Opcode – 011 Data DWord
Count

Reserved 011 11 Opcode – 100 – 111

Reserved 1XX XX

NOTES:

The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed before such a state variable
is updated. The other state variables are pipelined (default).

Doc Ref #: IHD_OS_V1Pt1_3_10 61

4.2 Command Map
This section provides a map of the graphics command opcodes.

4.2.1 Memory Interface Command Map
All the following commands are defined in Memory Interface Commands.Table 4-2. Memory Interface
Commands for RCP

Pipe Opcode
(28:23)

Command

Render
Video

[DevCT
G+]

Blitter

1-DWord

00h MI_NOOP All All All
01h Reserved

02h MI_USER_INTERRUPT All All All
03h MI_WAIT_FOR_EVENT All All All
04h MI_FLUSH All All
05h MI_ARB_CHECK All All All
06h Reserved
07h MI_REPORT_HEAD All All All
08h MI_ARB_ON_OFF [DevCTG+]
09h Reserved
0Ah MI_BATCH_BUFFER_END All All All
0Bh MI_SUSPEND_FLUSH [DevILK]

0Fh Reserved

2+ DWord

10h Reserved
11h MI_OVERLAY_FLIP

Reserved [DevCTG+]
[pre-
DevCTG]

12h MI_LOAD_SCAN_LINES_INCL
Reserved

All

13h MI_LOAD_SCAN_LINES_EXCL
Reserved

All

14h MI_DISPLAY_BUFFER_INFO [DevBW], [DevCL]
MI_DISPLAY_FLIP [DevCTG+]

All

15h Reserved
16h MI_SEMAPHORE_MBOX

[DevBW], [DevCL] Reserved
[DevCTG+] All All

17h Reserved

62 Doc Ref #: IHD_OS_V1Pt1_3_10

Pipe Opcode
(28:23)

Command

Render
Video

[DevCT
G+]

Blitter

18h MI_SET_CONTEXT All
1Ah–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All All All
21h MI_STORE_DATA_INDEX All All All
22h MI_LOAD_REGISTER_IMM All All All
23h MI_UPDATE_SNBT [DevCTG+]
24h MI_STORE_REGISTER_MEM All All All
25h MI_PROBE [DevCTG]

[DevILK]

26h MI_FLUSH_DW
[DevILK] This is the opcode for
MI_REPORT_PERF_COUNT. It only applied to
Render pipe

 All All

28h MI_REPORT_PERF_COUNT [DevILK]
2Ah–2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START All All All
32h–35h Reserved
37h–3Fh Reserved

Doc Ref #: IHD_OS_V1Pt1_3_10 63

4.2.2 2D Command Map

All the following commands are defined in Blitter Instructions.

Opcode (28:22) Command Comments

00h Reserved
01h XY_SETUP_BLT
02h Reserved
03h XY_SETUP_CLIP_BLT
04h–10h Reserved
11h XY_SETUP_MONO_PATTERN_SL_BLT
12h–23h Reserved
24h XY_PIXEL_BLT
25h XY_SCANLINES_BLT
26h XY_TEXT_BLT
23h–30h Reserved
31h XY_TEXT_IMMEDIATE_BLT
32h–3Fh Reserved
40h COLOR_BLT
41h–42h Reserved
43h SRC_COPY_BLT
44h–4Fh Reserved
50h XY_COLOR_BLT
51h XY_PAT_BLT
52h XY_MONO_PAT_BLT
53h XY_SRC_COPY_BLT
54h XY_MONO_SRC_COPY_BLT
55h XY_FULL_BLT
56h XY_FULL_MONO_SRC_BLT
57h XY_FULL_MONO_PATTERN_BLT
58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT
59h XY_MONO_PAT_FIXED_BLT
5Ah–70h Reserved
71h XY_MONO_SRC_COPY_IMMEDIATE_BLT
72h XY_PAT_BLT_IMMEDIATE
73h XY_SRC_COPY_CHROMA_BLT
74h XY_FULL_IMMEDIATE_PATTERN_BLT
75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
76h XY_PAT_CHROMA_BLT
77h XY_PAT_CHROMA_BLT_IMMEDIATE
78h–7Fh Reserved

64 Doc Ref #: IHD_OS_V1Pt1_3_10

4.2.3 3D/Media Command Map
Pipeline

Type
(28:27)

Opcode Sub
Opcode

Command De finition Chapter

Common
(pipelined)

Bits
26:24

Bits
23:16

0h 0h 00h URB_FENCE Graphics Processing Engine

0h 0h 01h CS_URB_STATE [Pre-DevSNB] Graphics Processing Engine

0h 0h 02h CONSTANT_BUFFER [Pre-DevSNB] Graphics Processing Engine

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

Common
(non-

pipelined)

Bits
26:24

Bits
23:16

0h 1h 00h Reserved n/a

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 04h–FFh Reserved n/a

Reserved Bits
26:24

Bits
23:16

0h 2h–7h XX Reserved n/a

Pipeline

Type
(28:27)

Opcode Sub
Opcode

Command De finition Chapter

Single DW Opcode
(26:24)

Bits
23:16

1h 0h 00h-01h Reserved n/a

1h 0h 02h STATE_POINTER_INVALIDATE

[DevCTG+]

Graphics Processing Engine

1h 0h 03h-0Ah Reserved n/a

1h 0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

1h 0h 0Ch-FFh Reserved n/a

1h 1h 00h-03h Reserved n/a

1h 1h 04h PIPELINE_SELECT Graphics Processing Engine

1h 1h 05h-FFh Reserved n/a

1h 2h-7h XX Reserved n/a

Doc Ref #: IHD_OS_V1Pt1_3_10 65

Media Opcode
(26:24)

Bits
23:16

2h 0h 00h MEDIA_STATE_POINTERS Media

2h 0h 05h-FFh Reserved n/a

2h 1h 00h MEDIA_OBJECT Media

2h 1h 01h MEDIA_OBJECT_EX Media

2h 1h 02h MEDIA_OBJECT_PRT Media

2h 1h 04h-FFh Reserved n/a

2h 2h–7h XX Reserved n/a

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command De finition Chapter

3D State
(Pipelined

)

Bits
26:24

Bits
23:16

3h 0h 00h 3DSTATE_PIPELINED_POINTERS 3D Pipeline

3h 0h 03h Reserved n/a

3h 0h 05h Reserved 3D Pipeline

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

3h 0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

3h 0h 0Ch Reserved n/a

3h 0h 11h 3DSTATE_GS [DevSNB+] Geometry Shader

3h 0h 12h 3DSTATE_CLIP [DevSNB+] Clipper

3h 0h 13h 3DSTATE_SF [DevSNB+] Strips & Fans

3h 0h 14h 3DSTATE_WM [DevSNB+] Windower

3D State
(Non-

Pipelined)

Bits
26:24

Bits
23:16

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

3h 1h 01h 3DSTATE_CONSTANT_COLOR Color Calculator

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

3h 1h 03h Reserved

3h 1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

66 Doc Ref #: IHD_OS_V1Pt1_3_10

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command De finition Chapter

3h 1h 05h 3DSTATE_DEPTH_BUFFER Windower

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

3h 1h 08h 3DSTATE_LINE_STIPPLE Windower

3h 1h 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP Windower

3h 1h 0Ah [DevCTG]: 3DSTATE_AA_LINE_PARAMS
[DevCTG+]

Windower

3h 1h 0Bh 3DSTATE_GS_SVB_INDEX [DevCTG+] Geometry Shader

3h 1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 [DevCTG-
B+]

Sampling Engine

3h 1h 0Eh 3DSTATE_STENCIL_BUFFER [DevILK]

Reserved [ILK,

Windower

3h 1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER [ILK,

Reserved [ILK,]

Windower

3h 1h 10h 3DSTATE_CLEAR_PARAMS [ILK, Windower

3h 1h 11h 3DSTATE_MONOFILTER_SIZE [ILK] Sampling Engine

3h 1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

3h 1h 18h 3DSTATE_SO_BUFFER HW Streamout

3h 1h 19h–FFh Reserved n/a

3D
(Control)

Bits
26:24

Bits
23:16

3h 2h 00h PIPE_CONTROL 3D Pipeline

3h 2h 01h–FFh Reserved n/a

3D
(Primitive)

Bits
26:24

Bits
23:16

3h 3h 00h 3DPRIMITIVE Vertex Fetch

3h 3h 01h–FFh Reserved n/a

3h 4h–7h 00h–FFh Reserved n/a

Doc Ref #: IHD_OS_V1Pt1_3_10 67

4.2.4 Video Codec Command Map

4.2.4.1 AVC BSD Command Map [DevCTG/DevILK]

This map is N/A to [DevBW], [DevCL]

Table 4-3. AVC Commands for the VCCP

Pipeline
Type (28:27)

Opcode
(26:24)

Sub
Opcode
(23:16)

Command De finition Chapter

AVC State

2h 4h 0h AVC_BSD_IMG_STATE AVC BSD

2h 4h 1h AVC_BSD_QM_STATE AVC BSD

2h 4h 2h AVC_BSD_SLICE_STATE AVC BSD

2h 4h 3h AVC_BSD_BUF_BASE_STATE AVC BSD

2h 4h 4h BSD_IND_OBJ_BASE_ADDR AVC BSD

2h 4h 5h-7h Reserved n/a

 AVC Object

2h 4h 8h AVC_BSD_OBJECT AVC BSD

2h 4h 9h-FFh Reserved n/a

4.2.4.2 VC1 BSD Command Map [DevCTG/DevILK]

This map is N/A to [DevBW], [DevCL].

Pipeline
Type (28:27)

Opcode
(26:24)

Sub
Opcode
(23:16)

Command De finition Chapter

VC1 State

2h 5h 0h VC1_BSD_PIC_STATE VC1 BSD

2h 5h 1h Reserved n/a

2h 5h 2h Reserved n/a

2h 5h 3h VC1_BSD_BUF_BASE_STATE VC1 BSD

2h 5h 4h Reserved n/a

2h 5h 5h-7h Reserved n/a

68 Doc Ref #: IHD_OS_V1Pt1_3_10

VC1 Object

2h 5h 8h VC1_BSD_OBJECT VC1 BSD

2h 5h 9h-FFh Reserved n/a

Doc Ref #: IHD_OS_V1Pt1_3_10 69

5. Register Address Maps

5.1 Graphics Register Address Map

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers. Individual register bit field
descriptions are provided in the following chapters. PCI configuration address maps and register bit descriptions are provided in
the following chapter.

5.1.1 Memory and I/O Space Registers

This section provides a high-level register map (register groupings per function). The memory and I/O maps for the graphics
device registers are shown in the following table, except PCI Configuration registers that are described in the following chapter.

NOTE: The VGA and Extended VGA registers can be accessed via standard VGA I/O locations as well as via memory-mapped
locations.

NOTE: All graphics MMIO registers can also be accessed via CPU I/O. See IOBASE, MMIO_INDEX and MMIO_DATA I/O
registers in the MontaraGM Cspec.

The memory space address listed for each register is an offset from the base memory address programmed into the MMADR
register (PCI configuration offset 14h).

Table 5-1. Graphics Controller Register Memory and I/O Map

Start
Offset

End
Offset

Description

00000h 00FFFh VGA and Extended VGA Control Registers. These registers are located in both I/O
space and memory space. The VGA and Extended VGA registers contain the
following register sets: General Control/Status, Sequencer (SRxx), Graphics
Controller (GRxx), Attribute Controller (Arxx), VGA Color Palette, and CRT Controller
(CRxx) registers. Detailed bit descriptions are provided in the VGA and Extended
VGA Register Chapter. The registers within a set are accessed using an indirect
addressing mechanism as described at the beginning of each section. Note that some
of the register description sections have additional operational information at the
beginning of the section

01000h 01FFFh Reserved

70 Doc Ref #: IHD_OS_V1Pt1_3_10

Start
Offset

End
Offset

Description

02000h 02FFFh Instruction, Memory, and Interrupt Control Registers:
Instruction Control Registers Ring Buffer registers and page table control registers
are located in this address range. Various instruction status, error, and operating
registers are located in this group of registers.
Graphics Memory Fence Registers. The Graphics Memory Fence registers are
used for memory tiling capabilities.
Interrupt Control/Status Registers. This register set provides interrupt control/status
for various GC functions.
Display Interface Control Register. This register controls the FIFO watermark and
provides burst lenSNBh control.
Logical Context Registers
Pipeline Statistic Counters

03000h 031FFh FENCE & Per Process SNBT Control registers

03200h 03FFFh Frame Buffer Compression Registers

04000h 043FFh Instruction Control Registers for Secondary (BSD) Command Streamer.

On [DevBW] and [DevCL] this range is Reserved.

04400h 04FFFh Video Decode Fixed Function Control Registers.

On [DevBW] and [DevCL] this range is Reserved.

05000h 05FFFh I/O Control Registers

06000h 06FFFh Clock Control Registers. This memory address space is the location of the GC clock
control and power management registers

09000h 09FFFh Reserved

0A000h 0AFFFh Display Palette Registers

0B000h 0FFFFh Reserved

10000h 13FFFh MMIO MCHBAR. Alias through which the graphics driver can access registers in the
MCHBAR accessed through device 0.

14000h 2FFFFh Reserved

30000h 3FFFFh Overlay Registers. These registers provide control of the overlay engine. The overlay
registers are double-buffered with one register buffer located in graphics memory and
the other on the device. On-chip registers are not directly writeable. To update the on-
chip registers software writes to the register buffer area in graphics memory and
instructs the device to update the on-chip registers.

40000h 5FFFFh Reserved

60000h 6FFFFh Display Engine Pipeline Registers

70000h 72FFFh Display and Cursor Registers

73000h 73FFFh Performance Counters

74000h 7FFFFh Reserved

Doc Ref #: IHD_OS_V1Pt1_3_10 71

5.1.2 PCI Configuration Space

See the releveant EDS/C-Specs for details on accessing PCI configuration space, PCI address map tables, and register
descriptions.

5.1.3 Graphics Register Memory Address Map

All graphics device registers are directly accessible via memory-mapped I/O and indirectly accessible via the MMIO_INDEX and
MMIO_DATA I/O registers. In addition, the VGA and Extended VGA registers are I/O mapped.

5.2 VGA and Extended VGA Register Map

For I/O locations, the value in the address column represents the register I/O address. For memory mapped locations, this address
is an offset from the base address programmed in the MMADR register.

5.2.1 VGA and Extended VGA I/O and Memory Register Map
Table 5-2. I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h–3B3h Reserved Reserved

3B4h VGA CRTC Index (CRX)
(monochrome)

VGA CRTC Index (CRX) (monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h–3B9h Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh–3BFh Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/
VGA Attribute Controller Data
(alternating writes select ARX or write
ARxx Data)

3C1h VGA Attribute Controller Data
(read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register
(MSR)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State
(DACSTATE)

VGA Color Palette Read Mode Index
(DACRX)

72 Doc Ref #: IHD_OS_V1Pt1_3_10

Address Register Name (Read) Register Name (Write)

3C8h VGA Color Palette Write Mode Index
(DACWX)

VGA Color Palette Write Mode Index
(DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register
(MSR)

Reserved

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx)

3D0h–3D1h Reserved Reserved

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions
Index (XRX)

GFX/2D Configurations Extensions
Index (XRX)

3D7h GFX/2D Configurations Extensions
Data (XRxx)

GFX/2D Configurations Extensions
Data (XRxx)

2D Registers

3D8h–3D9h Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh–3DFh Reserved Reserved

Doc Ref #: IHD_OS_V1Pt1_3_10 73

5.3 Indirect VGA and Extended VGA Register Indices

The registers listed in this section are indirectly accessed by programming an index value into the appropriate SRX, GRX, ARX,
or CRX register. The index and data register address locations are listed in the previous section. Additional details concerning the
indirect access mechanism are provided in the VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or
CRxx sections).

Table 5-3. 2D Sequence Registers (3C4h / 3C5h)

Index Sy m Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

74 Doc Ref #: IHD_OS_V1Pt1_3_10

Table 5-4. 2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset
01h GR01 Enable Set / Reset
02h GR02 Color Compare
03h GR03 Data Rotate
04h GR04 Read Plane Select
05h GR05 Graphics Mode
06h GR06 Miscellaneous
07h GR07 Color Don’t Care
08h GR08 Bit Mask
10h GR10 Address Mapping
11h GR11 Page Selector
18h GR18 Software Flags

Table 5-5. 2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Color

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

Doc Ref #: IHD_OS_V1Pt1_3_10 75

Table 5-6. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

22h CR22 Memory Read Latch Data

24h CR24 Test Register for Toggle State of Attribute Control Register

76 Doc Ref #: IHD_OS_V1Pt1_3_10

6. Memory Data Formats
This chapter describes the attributes associated with the memory-resident data objects operated on by the graphics pipeline. This
includes object types, pixel formats, memory layouts, and rules/restrictions placed on the dimensions, physical memory location,
pitch, alignment, etc. with respect to the specific operations performed on the objects.

6.1 Memory Object Overview

Any memory data accessed by the device is considered part of a memory object of some memory object type.

6.1.1 Memor y Object Types

The following table lists the various memory objects types and an indication of their role in the system.

Memory Object Type Role

Graphics Translation Table (SNBT) Contains PTEs used to translate “graphics addresses” into physical
memory addresses.

Hardware Status Page Cached page of sysmem used to provide fast driver synchronization.

Logical Context Buffer Memory areas used to store (save/restore) images of hardware
rendering contexts. Logical contexts are referenced via a pointer to the
corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary
means of controlling rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be read by
hardware. Many different state descriptor formats are supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through “indexed” 3D
primitive instructions.

VGA Buffer

(Must be mapped UC on PCI)

Graphics memory buffer used to drive the display output while in legacy
VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display devices.

Overlay Register, Filter Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register and filter
coefficient loading.

Cursor Surface Hardware cursor pattern in memory.

2D Render Source Surface used as primary input to 2D rendering operations.

Doc Ref #: IHD_OS_V1Pt1_3_10 77

Memory Object Type Role

2D Render R-M-W Destination 2D rendering output surface that is read in order to be combined in the
rendering function. Destination surfaces that accessed via this Read-
Modify-Write mode have somewhat different restrictions than Write-Only
Destination surfaces.

2D Render Write-Only Destination 2D rendering output surface that is written but not read by the 2D
rendering function. Destination surfaces that accessed via a Write-Only
mode have somewhat different restrictions than Read-Modify-Write
Destination surfaces.

2D Monochrome Source 1 bpp surfaces used as inputs to 2D rendering after being converted to
foreground/background colors.

2D Color Pattern 8x8 pixel array used to supply the “pattern” input to 2D rendering
functions.

DIB “Device Independent Bitmap” surface containing “logical” pixel values
that are converted (via LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be
accessed via R-M-W (aka blending). Also referred to as a Render
Target.

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D
rendering operations. Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture data in 3D
rendering operations.

“Non-3D” Texture

Surface read by Texture Samplers, though not in normal 3D rendering
operations (e.g., in video color conversion functions).

Motion Comp Surfaces These are the Motion Comp reference pictures.

Motion Comp Correction Data Buffer This is Motion Comp intra-coded or inter-coded correction data.

6.2 Channel Formats

6.2.1 Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The minimum value (all 0’s) is
interpreted as 0.0, the maximum value (all 1’s) is interpreted as 1.0. Values in between are equally spaced. For example, a 2-bit
UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by dividing the integer by 2n-1.

6.2.2 Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the surface format name, it indicates that a
reverse gamma conversion is to be done after the source surface is read, and a forward gamma conversion is to be done before the
destination surface is written.

78 Doc Ref #: IHD_OS_V1Pt1_3_10

6.2.3 Signed Normalized (SNORM)

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0. If the incoming value is interpreted as a
2’s-complement n-bit signed integer, the interpreted value can be calculated by dividing the integer by 2n-1-1. Note that the most
negative value of -2n-1 will result in a value slightly smaller than -1.0. This value is clamped to -1.0, thus there are two
representations of -1.0 in SNORM format.

6.2.4 Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a range
of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if required), keeping the value as an integer.

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 --> 3.0f). For 32-bit sources,
the value is rounded to nearest even.

6.2.5 Signed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2’s complement integer with a range of -2n-1 to +2n-1-1.

The SINT formats copy the source value to the destination (sign-extending if required), keeping the value as an integer.

The SSCALED formats convert the integer into the corresponding floating point value (e.g., 0xFFFD --> -3.0f). For 32-bit
sources, the value is rounded to nearest even.

6.2.6 Floating Point (FLOAT)

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel (R) Architecture Software Developer’s
Manual also describes floating point data types (though GENX deviates slightly from those behaviors).

6.2.6.1 32-bit Floating Point

Bit De scription

31 Sign (s)

30:23 Exponent (e) Biased Exponent

22:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == 255 and f != 0, then v is NaN regardless of s
• if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

Doc Ref #: IHD_OS_V1Pt1_3_10 79

6.2.6.2 64-bit Floating Point

Bit De scription

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == b’11..11’ and f != 0, then v is NaN regardless of s
• if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.2.6.3 16-bit Floating Point

Bit De scription

15 Sign (s)

14:10 Exponent (e) Biased Exponent

9:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == 31 and f != 0, then v is NaN regardless of s
• if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

80 Doc Ref #: IHD_OS_V1Pt1_3_10

The following table represents relationship between 32 bit and 16 bit floating point ranges:

flt32

exponent Unbiased
exponent flt16

exponent flt16 fraction
 255
 254 127
 ...

 127+16 16 Infinity 31 1.1111111111
 127+15 15 Max exponent 30 1.xxxxxxxxxx

 127 0 15 1.xxxxxxxxxx
 113 -14 Min exponent 1 1.xxxxxxxxxx
 112 Denormalized 0 0.1xxxxxxxxx
 111 Denormalized 0 0.01xxxxxxxx
 110 Denormalized 0 0.001xxxxxxx
 109 Denormalized 0 0.0001xxxxxx
 108 Denormalized 0 0.00001xxxxx
 107 Denormalized 0 0.000001xxxx
 106 Denormalized 0 0.0000001xxx
 115 Denormalized 0 0.00000001xx
 114 Denormalized 0 0.000000001x
 113 Denormalized 0 0.0000000001
 112 Denormalized 0 0.0
 ...
 0 0 0.0

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to nearest even.

6.2.6.4 11-bit Floating Point

Bit De scription

10:6 Exponent (e) Biased Exponent

5:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == 31 and f != 0 then v = NaN
• if e == 31 and f == 0 then v = +infinity
• if 0 < e < 31, then v = 2(e-15)*(1.f)
• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = 0 (zero)

Doc Ref #: IHD_OS_V1Pt1_3_10 81

6.2.6.5 10-bit Floating Point

Bit De scription

9:5 Exponent (e) Biased Exponent

4:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == 31 and f != 0 then v = NaN
• if e == 31 and f == 0 then v = +infinity
• if 0 < e < 31, then v = 2(e-15)*(1.f)
• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = 0 (zero)

6.2.6.6 Shared Exponent

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent. The three fractions assume an impled “0”
rather than an implied “1” as in the other floating point formats. This format does not support infinity and NaN values. There are
no sign bits, only positive numbers and zero can be represented. The value of each channel is determined as follows, where “f” is
the fraction of the corresponding channel, and “e” is the shared exponent.

v = (0.f)*2(e-15)

Bit De scription

31:27 Exponent (e) Biased Exponent

26:18 Blue Fraction

17:9 Green Fraction

8:0 Red Fraction

6.3 Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data (e.g., discrete pixel
(RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, bump map values etc. Many of these pixel
formats are common to the various pixel-oriented memory object types.

82 Doc Ref #: IHD_OS_V1Pt1_3_10

6.3.1 Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. I.e., pixel bits 7:0 are stored in byte n, pixel bits
15:8 are stored in byte n+1, and so on. The format labels include color components in little endian order (e.g., R8G8B8A8
format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order (LSB channel on the left,
MSB channel on the right), with the channel format specified following the channels with that format. For example,
R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of red in SNORM format, 5 bits of green in SNORM format,
and 6 bits of blue in UNORM format.

6.3.2 Intensity Formats

All surface formats containing “I” include an intensity value. When used as a source surface for the sampling engine, the
intensity value is replicated to all four channels (R,G,B,A) before being filtered. Intensity surfaces are not supported as
destinations.

6.3.3 Luminance Formats

All surface formats contaning “L” include a luminance value. When used as a source surface for the sampling engine, the
luminance value is replicated to the three color channels (R,G,B) before being filtered. The alpha channel is provided either from
another field or receives a default value. Luminance surfaces are not supported as destinations.

6.3.4 R1_UNORM (same as R1_UINT) and MONO8

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are replicated to all color channels.
Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to Texel[0,0]. This is different from the format used for
monochrome sources in the Blt engine.

7 6 5 4 3 2 1 0

T7 T6 T5 T4 T3 T2 T1 T0

Bit De scription

T0 Texel 0
On texture reads, this (unsigned) 1-bit value is replicated to all color channels.
Format: U1

... ...

T7 Texel 7
On texture reads, this (unsigned) 1-bit value is replicated to all color channels.
Format: U1

Doc Ref #: IHD_OS_V1Pt1_3_10 83

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only supported format for
the MAPFILTER_MONO filter. See the Sampling Engine chapter.

6.3.5 Palette Formats

6.3.5.1 P4A4_UNORM

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in the low nibble).

7 4 3 0

Alpha Palette Index

Bit De scription

7:4 Alpha
Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by
255 to yield a [0.0,1.0] Alpha value.
Format: U4

3:0 Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U4

6.3.5.2 A4P4_UNORM

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the high nibble).

7 4 3 0

Palette Index Alpha

Bit De scription

7:4 Palette Index

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U4

3:0 Alpha
Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by
255 to yield a [0.0,1.0] alpha value.
Format: U4

84 Doc Ref #: IHD_OS_V1Pt1_3_10

6.3.5.3 P8A8_UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in the low byte).

15 8 7 0

Alpha Palette Index

Bit De scription

7:4 Alpha
Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.
Format: U8

3:0 Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U8

6.3.5.4 A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the high byte).

15 8 7 0

Palette Index Alpha

Bit De scription

15:8 Palette Index

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U8

7:0 Alpha
Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.
Format: U8

Doc Ref #: IHD_OS_V1Pt1_3_10 85

6.3.5.5 P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit De scription

7:0 Palette Index

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U8

6.3.5.6 P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit De scription

1:0 Palette Index

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U2

86 Doc Ref #: IHD_OS_V1Pt1_3_10

6.4 Compressed Surface Formats

This section contains information on the internal organization of compressed surface formats.

6.4.1 FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel blocks into 128 bits. In
each compression format, the 32 texels in the two 4x4 blocks are arranged according to the following diagram:

Figure 6-1. FXT1 Encoded Blocks

B6682-01

t16 t17 t18 t19

t20 t21 t22 t23

t24 t25 t26 t27

t28 t29 t30 t31

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

6.4.1.1 Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on which encoding scheme results
in best overall visual quality. The following table lists the four different modes and their encodings:

Table 6-1. FXT1 Format Summary

Bit
127

Bit
126

Bit
125

Block
Compression

Mode

Summary Description

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color
values and transparent black

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3
discrete colors + transparent black and 2 LUTs using interpolated
values of Color 0,1 (t0-15) and Color 1,2 (t16-31).

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and
Color2,3 LUT used for t16-31. Alpha bit selects between LUTs with 4
interpolated colors or 3 interpolated colors + transparent black.

Doc Ref #: IHD_OS_V1Pt1_3_10 87

6.4.1.2 FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the encoded block. These base
colors are then expanded (using high-order bit replication) to 24-bit RGB colors, and used to define an 8-entry lookup table of
interpolated color values (the 8th entry is transparent black). The encoded block contains a 3-bit index value per texel that is used
to lookup a color from the table.

6.4.1.2.1 CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format:

Table 6-2. FXT CC_HI Block Encoding

Bit De scription

127:126 Mode = ‘00’b (CC_HI)

125:121 Color 1 Red

120:116 Color 1 Green

115:111 Color 1 Blue

110:106 Color 0 Red

105:101 Color 0 Green

100:96 Color 0 Blue

95:93 Texel 31 Select

50:48 Texel 16 Select

47:45 Texel 15 Select

2:0 Texel 0 Select

88 Doc Ref #: IHD_OS_V1Pt1_3_10

6.4.1.2.2 CC_HI Block Decoding

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as
shown in the following table:

Table 6-3. FXT CC_HI Decoded Colors

Expanded Color
Bit

Expanded Channel
Bit

Encoded Block
Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]

Color 1 [18:16] Color 1 Red [2:0] [125:123]

Color 1 [15:11] Color 1 Green [7:3] [120:116]

Color 1 [10:08] Color 1 Green [2:0] [120:118]

Color 1 [07:03] Color 1 Blue [7:3] [115:111]

Color 1 [02:00] Color 1 Blue [2:0] [115:113]

Color 0 [23:19] Color 0 Red [7:3] [110:106]

Color 0 [18:16] Color 0 Red [2:0] [110:108]

Color 0 [15:11] Color 0 Green [7:3] [105:101]

Color 0 [10:08] Color 0 Green [2:0] [105:103]

Color 0 [07:03] Color 0 Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors (with Alpha = 0FFh), along
with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table:

Table 6-4. FXT CC_HI Interpolated Color Table

Interpolated
Color

Color RGB Alpha

0 Color0.RGB 0FFh

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh

6 Color1.RGB 0FFh

7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded CC_HI block is used to
index into a 32-bit A8R8G8B8 color from the table completing the decode of the CC_HI block.

Doc Ref #: IHD_OS_V1Pt1_3_10 89

6.4.1.3 FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block. These colors are then
expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB colors. The encoded block contains a 2-bit
index value per texel that is used to lookup a 24-bit RGB color from the table. The Alpha component defaults to fully opaque
(0FFh).

6.4.1.3.1 CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format:

Table 6-5. FXT CC_CHROMA Block Encoding

Bit De scription

127:125 Mode = ‘010’b (CC_CHROMA)

124 Unused

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

...

33:32 Texel 16 Select

31:30 Texel 15 Select

...

1:0 Texel 0 Select

90 Doc Ref #: IHD_OS_V1Pt1_3_10

6.4.1.3.2 CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as shown in the
following tables:

Table 6-6. FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10:08] Color 3 Green [2:0] [118:116]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]
Color 3 [02:00] Color 3 Blue [2:0] [113:111]
Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10:08] Color 1 Green [2:0] [88:86]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:17] Color 0 Red [7:3] [78:74]
Color 0 [18:16] Color 0 Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]
Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

Doc Ref #: IHD_OS_V1Pt1_3_10 91

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded CC_CHROMA block is
used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 0FFh) completing the decode of the CC_CHROMA
block.

Table 6-7. FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB

0 Color0.ARGB

1 Color1.ARGB

2 Color2.ARGB

3 Color3.ARGB

6.4.1.4 FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0 and Color 1 are used
for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit RGB colors. The encoded
block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color from the table. The Alpha component
defaults to fully opaque (0FFh).

6.4.1.4.1 CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format:

Table 6-8. FXT CC_MIXED Block Encoding

Bit De scription

127 Mode = ‘1’b (CC_MIXED)

126 Color 3 Green [0]

125 Color 1 Green [0]

124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

92 Doc Ref #: IHD_OS_V1Pt1_3_10

Bit De scription

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

33:32 Texel 16 Select

31:30 Texel 15 Select

1:0 Texel 0 Select

6.4.1.4.2 CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block.

Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as per the following table:

Table 6-9. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

Doc Ref #: IHD_OS_V1Pt1_3_10 93

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as shown in
the following table:

Table 6-10. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]

Color 2 [09:08] Color 2 Green [1:0] [103:100]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10] Color 0 Green [2] [1] XOR [125]

Color 0 [09:08] Color 0 Green [1:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

94 Doc Ref #: IHD_OS_V1Pt1_3_10

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four interpolated colors (with Alpha =
0FFh). The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 16-31 indices, as
shown in the following figures:

Table 6-11. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-15
Select

Color RGB Alpha

0 Color0.RGB 0FFh

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh

3 Color1.RGB 0FFh

Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31
Select

Color RGB Alpha

0 Color2.RGB 0FFh

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh

3 Color3.RGB 0FFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are encoded as RGB565
colors, with the Green LSB obtained as shown in the following table:

Table 6-13. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Doc Ref #: IHD_OS_V1Pt1_3_10 95

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following diagram.

Table 6-14. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]
Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:19] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:87]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:19] Color 0 Red [7:3] [78:74]
Color 0 [18:16] Color 0 Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]
Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

96 Doc Ref #: IHD_OS_V1Pt1_3_10

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors. The Color0,1 table is
used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 16-31 indices. The color at index 1 is the
linear interpolation of the base colors, while the color at index 3 is defined as Black (0,0,0) with Alpha = 0, as shown in the
following figures:

Table 6-15. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15
Select

Color RGB Alpha

0 Color0.RGB 0FFh

1 (Color0.RGB + Color1.RGB) /2 0FFh

2 Color1.RGB 0FFh

3 Black (0,0,0) 0

Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-31
Select

Color RGB Alpha

0 Color2.RGB 0FFh

1 (Color2.RGB + Color3.RGB) /2 0FFh

2 Color3.RGB 0FFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded CC_MIXED block is
used to index into the appropriate 32-bit A8R8G8B8 color from the table, completing the decode of the CC_CMIXED block.

6.4.1.5 FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control bit (LERP) is used to
define the lookup table (or tables) used to dereference the 2-bit Texel Selects.

Doc Ref #: IHD_OS_V1Pt1_3_10 97

6.4.1.5.1 CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format:

Table 6-17. FXT CC_ALPHA Block Encoding

Bit De scription

127:125 Mode = ‘011’b (CC_ALPHA)

124 LERP

123:119 Color 2 Alpha

118:114 Color 1 Alpha

113:109 Color 0 Alpha

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

33:32 Texel 16 Select

31:30 Texel 15 Select

1:0 Texel 0 Select

98 Doc Ref #: IHD_OS_V1Pt1_3_10

6.4.1.5.2 CC_ALP HA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3 MSBs into the 3 LSBs, as
shown in the following tables:

Table 6-18. FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]

Color 2 [26:24] Color 2 Alpha [2:0] [123:121]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [31:27] Color 1 Alpha [7:3] [118:114]

Color 1 [26:24] Color 1 Alpha [2:0] [118:116]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [31:27] Color 0 Alpha [7:3] [113:109]

Color 0 [26:24] Color 0 Alpha [2:0] [113:111]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

Doc Ref #: IHD_OS_V1Pt1_3_10 99

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th entry defined as transparent
black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded CC_ALPHA block is used to index into a 32-bit
A8R8G8B8 color from the table completing the decode of the CC_ALPHA block.

Table 6-19. FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha

0 Color0.RGB Color0.Alpha

1 Color1.RGB Color1.Alpha

2 Color2.RGB Color2.Alpha

3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The Color0,1 table is used as
a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-31 indices, as shown in the following figures:

Table 6-20. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-15
Select

Color ARGB

0 Color0.ARGB

1 (2*Color0.ARGB + Color1.ARGB + 1) /3

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

Table 6-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-31
Select

Color ARGB

0 Color2.ARGB

1 (2*Color2.ARGB + Color1.ARGB + 1) /3

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

100 Doc Ref #: IHD_OS_V1Pt1_3_10

6.4.2 BC4

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data. An 8-byte
compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and column
range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows:

Bit De scription

7:0 red_0

15:8 red_1

18:16 texel[0][0] bit code

21:19 texel[0][1] bit code

24:22 texel[0][2] bit code

27:25 texel[0][3] bit code

30:28 texel[1][0] bit code

33:31 texel[1][1] bit code

36:34 texel[1][2] bit code

39:37 texel[1][3] bit code

42:40 texel[2][0] bit code

45:43 texel[2][1] bit code

48:46 texel[2][2] bit code

51:49 texel[2][3] bit code

54:52 texel[3][0] bit code

57:55 texel[3][1] bit code

60:58 texel[3][2] bit code

63:61 texel[3][3] bit code

Doc Ref #: IHD_OS_V1Pt1_3_10 101

There are two interpolation modes, chosen based on which reference color is larger. The first mode has the two reference colors
plus six equal-spaced interpolated colors between the reference colors, chosen based on the three-bit code for that texel. The
second mode has the two reference colors plus four interpolated colors, chosen by six of the three-bit codes. The remaining two
codes select min and max values for the colors. The values of red_0 through red_7 are computed as follows:

red_0 = red_0; // bit code 000
red_1 = red_1; // bit code 001
if (red_0 > red_1)
{

red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010
red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011
red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100
red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101
red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110
red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

}
else
{
 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010
 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011
 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100
 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101
 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)
 red_7 = 1.0; // bit code 111
}

102 Doc Ref #: IHD_OS_V1Pt1_3_10

6.4.3 BC5

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. A 16-byte
compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and column
range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows:

Bit De scription

7:0 red_0
15:8 red_1

18:16 texel[0][0] red bit code
21:19 texel[0][1] red bit code
24:22 texel[0][2] red bit code
27:25 texel[0][3] red bit code
30:28 texel[1][0] red bit code
33:31 texel[1][1] red bit code
36:34 texel[1][2] red bit code
39:37 texel[1][3] red bit code
42:40 texel[2][0] red bit code
45:43 texel[2][1] red bit code
48:46 texel[2][2] red bit code
51:49 texel[2][3] red bit code
54:52 texel[3][0] red bit code
57:55 texel[3][1] red bit code
60:58 texel[3][2] red bit code
63:61 texel[3][3] red bit code
71:64 green_0
79:72 green_1
82:80 texel[0][0] green bit code
85:83 texel[0][1] green bit code
88:86 texel[0][2] green bit code
91:89 texel[0][3] green bit code
94:92 texel[1][0] green bit code
97:95 texel[1][1] green bit code

100:98 texel[1][2] green bit code
103:101 texel[1][3] green bit code
106:104 texel[2][0] green bit code
109:107 texel[2][1] green bit code
112:110 texel[2][2] green bit code
115:113 texel[2][3] green bit code
118:116 texel[3][0] green bit code
121:119 texel[3][1] green bit code

Doc Ref #: IHD_OS_V1Pt1_3_10 103

Bit De scription

124:122 texel[3][2] green bit code
127:125 texel[3][3] green bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has the two reference colors
plus six equal-spaced interpolated colors between the reference colors, chosen based on the three-bit code for that texel. The
second mode has the two reference colors plus four interpolated colors, chosen by six of the three-bit codes. The remaining two
codes select min and max values for the colors. The values of red_0 through red_7 are computed as follows:

red_0 = red_0; // bit code 000
red_1 = red_1; // bit code 001
if (red_0 > red_1)
{

red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010
red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011
red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100
red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101
red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110
red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

}
else
{
 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010
 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011
 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100
 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101
 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)
 red_7 = 1.0; // bit code 111
}

The same calculations are done for green, using the corresponding reference colors and bit codes.

6.5 Video Pixel/Texel Formats

This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay chapter for a description of
how the Y, U, V components are sampled.

6.5.1 Packed Memory Organization

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain two pixels and only
the byte order affects the memory organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate names:
• YCRCB_NORMAL (YUYV/YUY2)
• YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM)
• YCRCB_SWAPUV (YVYU) (G8R8_G8B8_UNORM)
• YCRCB_SWAPY (UYVY)

The channels are mapped as follows:
Cr (V) Red
Y Green
Cb (U) Blue

104 Doc Ref #: IHD_OS_V1Pt1_3_10

Figure 6-2. Memory layout of packed YUV 4:2:2 formats

B6683-01

26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

V
Pixel N

Y
Pixel N+1

U
Pixel N

Y

YUV 4:2:2 (Normal)

27 26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

U
Pixel N

Y
Pixel N+1

V
Pixel N

Y

YUV 4:2:2 (UV Swap)

27 26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

Y
Pixel N+1

V
Pixel N

Y
Pixel N

U

YUV 4:2:2 (Y Swap)

27 26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

Y
Pixel N+1

U
Pixel N

Y
Pixel N

V

YUV 4:2:2 (UV/Y Swap)

27

6.5.2 Planar Memory Organization

Planar formats use what could be thought of as separate buffers for the three color components. Because there is a separate stride
for the Y and U/V data buffers, several memory footprints can be supported.

Note: There is no direct support for use of planar video surfaces as textures. The sampling engine can be used to operate on each
of the 8bpp buffers separately (via a single-channel 8-bit format such as I8_UNORM). The U and V buffers can be written
concurrently by using multiple render targets from the pixel shader. The Y buffer must be written in a separate pass due to its
different size.

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data:
1. The memory organization of the common YV12 data, where all three planes are contiguous and the strides of U and V

components are half of that of the Y component.
2. An alternative memory structure that the addresses of the three planes are independent but satisfy certain alignment

restrictions.

Doc Ref #: IHD_OS_V1Pt1_3_10 105

Figure 6-3. YUV 4:2:0 Format Memory Organization

B6684-01

V

U

Width

H
eig

h
t

Y Pointer

V Pointer

U Pointer H
eig

h
t/2

H
eig

h
t/2

Width/2

(a)

U

V

Y

Width

H
eig

h
t

Y Pointer

U Pointer

V Pointer H
eig

h
t/2

H
eig

h
t/2

Width/2

(b)

106 Doc Ref #: IHD_OS_V1Pt1_3_10

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are contiguous. The stride of
the U and V planes is a quarter of that of the Y plane.

Figure 6-4. YUV 4:1:0 Format Memory Organization

B6685-01

Y

Width

H
eig

h
t

Y Pointer

U Pointer

V Pointer

Height/4

Width/4

Height/4

U

V

6.6 Surface Memory Organizations

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats.

Doc Ref #: IHD_OS_V1Pt1_3_10 107

6.7 Graphics Translation Tables

The Graphics Translation Tables SNBT (Graphics Translation Table, sometimes known as the global SNBT) and PPSNBT (Per-
Process Graphics Translation Table) are memory-resident page tables containing an array of DWord Page Translation Entries
(PTEs) used in mapping logical Graphics Memory addresses to physical memory addresses, and sometimes snooped system
memory “PCI” addresses.

The graphics translation tables must reside in (unsnooped) system memory.

The base address (MM offset) of the SNBT and the PPSNBT are programmed via the PSNBBL_CTL and PSNBBL_CTL2 MI
registers, respectively. The translation table base addresses must be 4KB aligned. The SNBT size can be either 128KB, 256KB
or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes respectively) and is physically contiguous. The global SNBT
should only be programmed via the range defined by SNBTADR. The PPSNBT is programmed directly in memory. The per-
process SNBT (PPSNBT) size is controlled by the PSNBBL_CTL2 register. The PPSNBT can, in addition to the above sizes,
also be 64KB in size (corresponding to a 64MB aperture). Refer to the SNBT Range chapter for a bit definition of the PTE
entries.

6.8 Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system memory. This page exists primarily to
allow the device to report status via PCI master writes – thereby allowing the driver to read/poll WB memory instead of UC reads
of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in Memory Interface
Registers) includes a description of the layout of the Hardware Status Page.

6.9 Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device. Refer to the Programming Interface chapter
for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer memory areas. The ring
buffer must start on a 4KB boundary and be allocated in linear memory. The lenSNBh of any one ring buffer is limited to 2MB.

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must reside in the same memory space as the
vertex buffers.

6.10 Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an MI_BATCH_BUFFER_START and related
instructions (see Memory Interface Instructions, Programming Interface). They are used to transport instructions external to ring
buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The device will treat these as MainMemory (MM)
address, and therefore not snoop the CPU cache.

108 Doc Ref #: IHD_OS_V1Pt1_3_10

The batch buffer must be QWord aligned and a multiple of QWords in lenSNBh. The ending address is the address of the last
valid QWord in the buffer. The lenSNBh of any single batch buffer is “virtually unlimited” (i.e., could theoretically be 4GB in
lenSNBh).

6.11 Display, Overlay, Cursor Surfaces

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode. See the Display chapter
for specifics on how these surfaces are defined/used.

6.12 2D Render Surfaces
These surfaces are used as general source and/or destination operands in 2D Blt operations.

Note that the device provides no coherency between 2D render surfaces and the texture cache – i.e., the texture cache must be
explicitly invalidated prior to the use of a texture that has been modified via the Blt engine.

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, restrictions on their size,
placement, etc.

6.13 2D Monochrome Source
These 1bpp surfaces are used as source operands to certain 2D Blt operations, where the Blt engine expands the 1bpp source into
the required color depth.

The device uses the texture cache to store monochrome sources. There is no mechanism to maintain coherency between 2D
render surfaces and (texture)-cached monochrome sources, software is required to explicitly invalidate the texture cache before
using a memory-based monochrome source that has been modified via the Blt engine. (Here the assumption is that SW enforces
memory-based monochrome source surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, restrictions on their size,
placement, coherency rules, etc.

6.14 2D Color Pattern

Color pattern surfaces are used as special pattern operands in 2D Blt operations.

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency between 2D render
surfaces and (texture)-cached color patterns, software is required to explicitly invalidate the texture cache before using a memory-
based color pattern that has been modified via the Blt engine. (Here the assumption is that SW enforces memory-based color
pattern surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, restrictions on their size,
placement, etc.

Doc Ref #: IHD_OS_V1Pt1_3_10 109

6.15 3D Color Buffer (Destination) Surfaces
3D Color buffer surfaces are used to hold per-pixel color values for use in the 3D pipeline. Note that the 3D pipeline always
requires a Color buffer to be defined.

Refer to Non-Video Pixel/Texel Formats section in this chapter for details on the Color buffer pixel formats. Refer to the 3D
Instruction and 3D Rendering chapters for details on the usage of the Color Buffer.

The Color buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 3DSTATE_BUFFER_INFO instruction.
That buffer can be mapped to LM, SM (snooped or unsnooped) and can be linear or tiled. When both the Depth and Color
buffers are tiled, the respective Tile Walk directions must match.

When a linear Color and a linear Depth buffers are used together:
1. They may have different pitches, though both pitches must be a multiple of 32 bytes.
2. They must be co-aligned with a 32-byte region.

6.16 3D Depth Buffer Surfaces

Depth buffer surfaces are used to hold per-pixel depth values and per-pixel stencil values for use in the 3D pipeline. Note that the
3D pipeline does not require a Depth buffer to be allocated, though a Depth buffer is required to perform (non-trivial) Depth Test
and Stencil Test operations.

The following table summarizes the possible formats of the Depth buffer. Refer to Depth Buffer Formats section in this chapter
for details on the pixel formats. Refer to the Windower and DataPort chapters for details on the usage of the Depth Buffer.

Table 6-22. Depth Buffer Formats

DepthBufferFormat / DepthComponent bpp Description

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit
stencil in lower byte of second DWord

D32_FLOAT 32 32-bit floating point Z depth value

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit
stencil value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

The Depth buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that instruction in
Windower for restrictions.

6.17 3D Separate Stencil Buffer Surfaces [ILK+]

Separate Stencil buffer surfaces are used to hold per-pixel stencil values for use in the 3D pipeline. Note that the 3D pipeline does
not require a Stencil buffer to be allocated, though a Stencil buffer is required to perform (non-trivial) Stencil Test operations.

The following table summarizes the possible formats of the Stencil buffer. Refer to Stencil Buffer Formats section in this chapter
for details on the pixel formats. Refer to the Windower chapters for details on the usage of the Stencil Buffer.

110 Doc Ref #: IHD_OS_V1Pt1_3_10

Table 6-23. Depth Buffer Formats

DepthBufferFormat / DepthComponent bpp Description

S8_UINT 8 8-bit stencil value in a byte

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See the description of that instruction in
Windower for restrictions.

6.18 Surface Layout

This section describes the formats of surfaces and data within the surfaces.

6.18.1 Buffers

A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each element is a single surface format
using one of the supported surface formats depending on how the surface is being accessed. The surface pitch state for the
surface specifies the size of each structure in bytes.

The buffer is stored in memory contiguously with each element in the structure packed together, and the first element in the next
structure immediately following the last element of the previous structure. Buffers are supported only in linear memory.

B6686-01

a b c d e f0

1

2

3

15

Surface Pitch

B
u
ff
er

 S
iz

e

Doc Ref #: IHD_OS_V1Pt1_3_10 111

6.18.2 1D Surfaces

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces are also supported. Please refer
to the 2D Surfaces section for details on how these surfaces are stored.

6.18.3 2D Surfaces

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced by a single base address. The
base map and associated mipmaps are located within a single rectangular area of memory identified by the base address of the
upper left corner and a pitch. The base address references the upper left corner of the base map. The pitch must be specified at
least as large as the widest mip-map. In some cases it must be wider; see the section on Minimum Pitch below.

These surfaces may be overlapped in memory and must adhere to the following memory organization rules:

• For non-compressed texture formats, each mipmap must start on an even row within the monolithic rectangular area. For
1-texel-high mipmaps, this may require a row of padding below the previous mipmap. This restriction does not apply to
any compressed texture formats: i.e., each subsequent (lower-res) compressed mipmap is positioned directly below the
previous mipmap.

• Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte (DQWord) for tiled. (Note
that tiled mipmaps are not required to start at the left edge of a tile row).

6.18.3.1 Computing MIP level sizes

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level (i+1) sizes are determined by
dividing the width and height of the current (i) LOD level by 2 and truncating to an integer (floor). This is equivalent to shifting
the width/height by 1 bit to the right and discarding the bit shifted off. The map height and width are clamped on the low side at 1.

In equations, the width and height of an LOD “L” can be expressed as:

()()
()()1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

6.18.3.2 Base Address for LOD Calculation

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y are in units of texels, with
the upper left corner of the base map at (0, 0). The final step is to convert from Cartesian coordinates to linear addresses as
documented at the bottom of this section.

It is useful to think of the concept of “stepping” when considering where the next MIP level will be stored in rectangular memory
space. We either step down or step right when moving to the next higher LOD.

• for MIPLAYOUT_RIGHT maps:
o step right when moving from LOD 0 to LOD 1
o step down for all of the other MIPs

• for MIPLAYOUT_BELOW maps:
o step down when moving from LOD 0 to LOD 1
o step right when moving from LOD 1 to LOD 2
o step down for all of the other MIPs

112 Doc Ref #: IHD_OS_V1Pt1_3_10

To account for the cache line alignment required, we define i and j as the width and height, respectively, of an alignment unit.
This alignment unit is defined below. We then define lower-case wL and hL as the padded width and height of LOD “L” as
follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
Hceiljh

i
Wceiliw

L
L

L
L

*

*

Equations to compute the upper left corner of each MIP level are then as follows:

for MIPLAYOUT_RIGHT maps:

...
),(

),(
),(

)0,(
)0,0(

32104

2103

102

01

0

hhhwLOD
hhwLOD

hwLOD
wLOD

LOD

++=
+=

=
=
=

for MIPLAYOUT_BELOW maps:

...
),(

),(
),(

),0(
)0,0(

32014

2013

012

01

0

hhhwLOD
hhwLOD

hwLOD
hLOD

LOD

++=
+=

=
=
=

Doc Ref #: IHD_OS_V1Pt1_3_10 113

6.18.3.3 Minimum Pitch

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place the map within. This is
approximately equal to 1.5x the pitch required by the base map, with possible adjustments made for cache line alignment. For
MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, the minimum pitch required is equal to that required by the base
(LOD 0) map.

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for MIPLAYOUT_RIGHT
maps. This ensures that enough pitch is available, and since it is restricted to MIPLAYOUT_RIGHT maps, not much memory is
wasted. It is up to the driver (hardware independent) whether to use this simple determination of pitch or a more complex one.

6.18.3.4 Alignment Unit Size

The following table indicates the i and j values that should be used for each map format. Note that the compressed formats are
padded to a full compression cell.

Table 6-24. Alignment Units for Texture Maps

surface format alignment unit width “i” alignment unit height “j”

YUV 4:2:2 formats 4 * see below

BC1-5 4 4

FXT1 8 4

all other formats 4 * see below

* For these formats, the vertical alignment factor “j” is determined as follows:

• For [All:
o j = 4 for any separate stencil buffer surface ([DevILK] only)
o j = 2 for all other surfaces

114 Doc Ref #: IHD_OS_V1Pt1_3_10

6.18.3.5 Cartesian to Linear Address Conversion

A set of variables are defined in addition to the i and j defined above.

• b = bytes per texel of the native map format (0.5 for FXT1, and 4-bit surface format, 2.0 for YUV 4:2:2, others aligned to
surface format)

• t = texel rows / memory row (4 for FXT1, 1 for all other formats)
• p = pitch in bytes (equal to pitch in dwords * 4)
• B = base address in bytes (address of texel 0,0 of the base map)
• x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is always a multiple of i and y is a

multiple of j)
• A = linear address in bytes

xbt
t
ypBA ++=

This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line alignment
requirements).

6.18.3.6 Compressed Mipmap Layout

Mipmaps of textures using compressed (FXT) texel formats are also stored in a monolithic format. The compressed mipmaps are
stored in a similar fashion to uncompressed mipmaps, with each block of source (uncompressed) texels represented by a 1 or 2
QWord compressed block. The compressed blocks occupy the same logical positions as the texels they represent, where each row
of compressed blocks represent a 4-high row of uncompressed texels. The format of the blocks is preserved, i.e., there is no
“intermediate” format as required on some other devices.

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps:

• Mipmaps are not required to start on even rows, therefore each successive mip level is located on the texel row immediately
below the last row of the previous mip level. Pad rows are neither required nor allowed.

• The dimensions of the mip maps are first determined by applying the sizing algorithm presented in Non-Power-of-Two
Mipmaps above. Then, if necessary, they are padded out to compression block boundaries.

6.18.3.7 Surface Arrays

6.18.3.7.1 For all surface other than separate stencil buffer

Both 1D and 2D surfaces can be specified as an array. The only difference in the surface state is the presence of a depth value
greater than one, indicating multiple array “slices”.

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This QPitch is multiplied by
the array index to and added to the vertical component of the address to determine the vertical component of the address for that
slice. Within the slice, the map is stored identically to a MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the only
format supported by 1D non-arrays and both 2D and 1D arrays, the programming of the MIP Map Layout Mode state variable is
ignored when using a TextureArray.

Doc Ref #: IHD_OS_V1Pt1_3_10 115

The following equation is used for surface formats other than compressed textures:

() PitchjhhQPitch *1110 ++=

The input variables in this equation are defined in sections above.

The equation for compressed textures (BC* and FXT1 surface formats) follows:

()
Pitch

jhh
QPitch *

4
1110 ++

=

6.18.3.7.2 For separate stencil buffer [DevILK]

The separate stencil buffer does not support mip mapping, thus the storage for LODs other than LOD 0 is not needed. The
following QPitch equation applies only to the separate stencil buffer:

PitchhQPitch *0=

6.18.3.7.3 8.19.4.8.1 MCS Surface

The MCS surface consists of one element per pixel, with the element size being an 8 bit unsigned integer value for 4x
multisampled surfaces and a 32 bit unsigned integer value for 8x multisampled surfaces. Each field within the element indicates
which sample slice (SS) the sample resides on.

6.18.3.8 4x MCS

The 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows:
7:6 5:4 3:2 1:0

sample 3 SS sample 2 SS sample 1 SS sample 0 SS

Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 0x00 indicates that all
four samples are stored in sample slice 0 (thus all have the same color). This is the fully compressed case. An MCS value of 0xff
indicates that all samples in the pixel are in the clear state, and none of the sample slices are valid. The pixel’s color must be
replaced with the surface’s clear value.

6.18.3.9 8x MCS

Extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 samples, or 24 bits per pixel. The 24-bit
MCS value per pixel is placed in a 32-bit footprint, with the upper 8 bits unused as shown below.

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0

reserved
(MBZ)

sample 7
SS

sample 6
SS

sample 5
SS

sample 4
SS

sample 3
SS

sample 2
SS

sample 1
SS

sample 0
SS

Other than this, the 8x algorithm is the same as the 4x algorithm. The MCS value indicating clear state is 0x00ffffff.

116 Doc Ref #: IHD_OS_V1Pt1_3_10

6.18.3.9.1 MSS Surface

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching the pixel dimensions of
the logical multisampled surface. The number of array slices in the physical surface is 4 or 8 times that of the logical surface
(depending on the number of multisamples). Sample slices belonging to the same logical surface array slice are stored in adjacent
physical slices. The sampling engine ld2dss message gives direct access to a specific sample slice.

6.18.4 Cube Surfaces

The 3D pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the origin of a 3D coordinate
system aligned to the cube faces. These maps can be used to supply texel (color/alpha) data of the environment in any direction
from the enclosed origin, where the direction is supplied as a 3D “vector” texture coordinate. These cube maps can also be
mipmapped.

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are identified by their
relationship to the 3D texture coordinate system. The subsections below describe the cube maps as described at the API as well
as the memory layout dictated by the hardware.

6.18.4.1 Hardware Cube Map Layout

6.18.4.1.1 [Pre-Dev ILK]

The cube face textures are stored in the same way as 3D surfaces are stored (see section 0 for details). For cube surfaces,
however, the depth is equal to the number of faces (always 6) and is not reduced for each MIP. The equation for DL is replaced
with the following for cube surfaces:

6=LD

The “q” coordinate is replaced with the face identifier as follows:

“q”

coordinate
face

0 +x
1 -x
2 +y
3 -y
4 +z
5 -z

Doc Ref #: IHD_OS_V1Pt1_3_10 117

6.18.4.1.2 [Dev ILK+]

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 6.18.3 for details). For cube
surfaces, the depth (array instances) is equal to 6. The array index “q” corresponds to the face according to the following table:

“q”

coordinate
face

0 +x
1 -x
2 +y
3 -y
4 +z
5 -z

6.18.4.2 Restrictions

• The cube map memory layout is the same whether or not the cube map is mip-mapped, and whether or not all six faces are
“enabled”, though the memory backing disabled faces or non-supplied levels can be used by software for other purposes.

• The cube map faces all share the same Surface Format

118 Doc Ref #: IHD_OS_V1Pt1_3_10

6.18.5 3D Surfaces

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure known as a Texture3D
(volume) texture. A volume texture map consists of many planes of 2D texture maps. See Sampler for a description of how
volume textures are used.

Figure 6-5. Volume Texture Map

B6688-01

q

u

v

Plane=0

Plane=0
P=0

Mip 0 Mip 1 Mip 2

Note that the number of planes defined at each successive mip level is halved. Volumetric texture maps are stored as follows.
All of the LOD=0 q-planes are stacked vertically, then below that, the LOD=1 q-planes are stacked two-wide, then the LOD=2 q-
planes are stacked four-wide below that, and so on.

The width, height, and depth of LOD “L” are as follows:

()()
()()1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

This is the same as for a regular texture. For volume textures we add:

()()1:?0 LdepthLdepthDL >>>>>=

Cache-line aligned width and height are as follows, with i and j being a function of the map format as shown in Table 6-24.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
Hceiljh

i
Wceiliw

L
L

L
L

*

*

Note that it is not necessary to cache-line align in the “depth” dimension (i.e. lower case “d”).

The following equations for LODL,q give the base address Cartesian coordinates for the map at LOD L and depth q.

Doc Ref #: IHD_OS_V1Pt1_3_10 119

...

)*)3(*
4

*
2

,)8%((

)*)2(*
2

,)4%((

)*)1(*,*)2%((

)*,0(

32
2

1
1

003,3

21
1

002,2

1001,1

0,0

hqhDceilhDceilhDwqLOD

hqhDceilhDwqLOD

hqhDwqLOD
hqLOD

q

q

q

q

>>+⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

>>+⎟
⎠
⎞

⎜
⎝
⎛+=

>>+=

=

These values are then used as “base addresses” and the 2D MIP Map equations are used to compute the location within each
LOD/q map.

6.18.5.1 Minimum Pitch

The minimum pitch required to store the 3D map may in some cases be greater than the minimum pitch required by the LOD=0
map. This is due to cache line alignment requirements that may impact some of the MIP levels requiring additional spacing in the
horizontal direction.

6.19 Surface Padding Requirements

6.19.1 Sampling Engine Surfaces

The sampling engine accesses texels outside of the surface if they are contained in the same cache line as texels that are within the
surface. These texels will not participate in any calculation performed by the sampling engine and will not affect the result of any
sampling engine operation, however if these texels lie outside of defined pages in the SNBT, a SNBT error will result when the
cache line is accessed. In order to avoid these SNBT errors, “padding” at the bottom and right side of a sampling engine surface
is sometimes necessary.

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All pages included in the
cache lines that are part of the surface must map to valid SNBT entries to avoid errors. To determine the necessary padding on
the bottom and right side of the surface, refer to the table in Section 6.18.3.4 for the i and j parameters for the surface format in
use. The surface must then be extended to the next multiple of the alignment unit size in each dimension, and all texels contained
in this extended surface must have valid SNBT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 and j=2. In this case, the
extended surface would be 16 by 10. Note that these calculations are done in texels, and must be converted to bytes based on the
surface format being used to determine whether additional pages need to be defined.

For buffers, which have no inherent “height,” padding requirements are different. A buffer must be padded to the next multiple of
256 array elements, with an additional 16 bytes added beyond that to account for the L1 cache line.

For cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must be ensured regardless of
whether the surface is stored tiled or linear. This is due to the potential rotation of cache line orientation from memory to cache.

120 Doc Ref #: IHD_OS_V1Pt1_3_10

For compressed textures (BC* and FXT1 surface formats), padding at the bottom of the surface is to an even compressed row,
which is equal to a multiple of 8 uncompressed texel rows. Thus, for padding purposes, these surfaces behave as if j = 8 only for
surface padding purposes. The value of 4 for j still applies for mip level alignment and QPitch calculation.

For YUV, 96 bpt, and 48 bpt surface formats, additional padding is required. These surfaces require an extra row plus 16 bytes of
padding at the bottom in addition to the general padding requirements.

6.19.2 Render Target and Media Surfaces

The data port accesses data (pixels) outside of the surface if they are contained in the same cache request as pixels that are within
the surface. These pixels will not be returned by the requesting message, however if these pixels lie outside of defined pages in
the SNBT, a SNBT error will result when the cache request is processed. In order to avoid these SNBT errors, “padding” at the
bottom of the surface is sometimes necessary.

If the surface contains an odd number of rows of data, a final row below the surface must be allocated. If the surface will be
accessed in field mode (Vertical Stride = 1), enough additional rows below the surface must be allocated to make the extended
surface height (including the padding) a multiple of 4.

