

50 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.13.5 3DPRIM_START _INSTANCE – Load Indirect Start Instance

3DPRIM_START_INSTANCE - Load Indirect Start Instance
Register Type: MMIO_CS

Address Offset: 243C-243Fh

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit De scription

31:0 Start Vertex Project: All Format: U32
This register is used to store the Start Instance of the 3D_PRIMITIVE command when Load Indirect
Enable is set.

1.1.13.6 3DPRIM_BA SE_VERTEX – Load Indirect Base Vertex

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex
Register Type: MMIO_CS
Address Offset: 2440-2443h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit De scription

31:0 Base Vertex Project: All Format: S31
This register is used to store the Base Vertex of the 3D_PRIMITIVE command when Load Indirect
Enable is set.

Doc Ref #: IHD_OS_V1Pt3_3_10
 51

1.1.14 Performance Statistics Registers

1.1.14.1 OACONTROL – Observation Architecture Control

OACONTROL – Observation Architecture Control
Register Type: MMIO
Address Offset: 2360h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32
This register is used to program the OA unit.

[DevSNB B {W/A}] If software intends to reset the OA buffer to start a new one, after clearing the Timer Enable bit,
software must check to see if the head pointer in OASTATUS2 is greater than the tail pointer in OASTATUS1. If so
software must program the head pointer to a value less than the current head pointer value. This must be done before
the buffer becomes active again

Bit De scription

31:12 Select Context ID
Project: All
Specifies the context ID of the one context that affects the performance counters. All other contexts
are ignored.

11:6 Timer Period Project: All Format: Select

Specifies the period of the timer strobe as a function of the minimum TIME_STAMP
resolution. The period is determined by selecting a specified bit from the TIME_STAMP
register as follows:

StrobePeriod = MinimumTimeStampPeriod * 2TimerPeriod

The exponent is defined by this field.
Note: The TIME_STAMP is not reset at start time so the phase of the strobe is not synchronized with
the enable of the OA unit. This could result in approximately a full StrobePeriod elapsing prior to the
first trigger. Usage for this mechanism should be time based periodic triggering, typically.

52 Doc Ref #: IHD_OS_V1Pt3_3_10

OACONTROL – Observation Architecture Control
5 Timer Enable

Project: All
Default Value: 0h Disabled
Format: Enable
This field enables the timer logic to output a periodic strobe, as defined by the Timer Period. When
disabled the timer output is not asserted.

Value Na me Description Project

0h Disable Counter does not get written out on regular
interval

All

1h Enable Counter gets written out on regular intervals,
defined by the Timer Period

All

4:2 Counter Select

Project: All
Default Value: 0h Write 64 bytes
Format: Counter size Select

This field when reset (i.e. bit = 0) selects the first 64B with time-stamp, REPORT_ID and 13
counters. When this bit is 1, second 64B write with 16 counters are written out.

Value Size Description Project

001b 128bytes
Write 128 Bytes containing:

• RPT_ID, TIME_STAMP, and the
A-Cntr 0-12 counters

• A-Cntr 13-28 counters.

All

011b 196bytes
Write 196 Bytes containing.

• RPT_ID, TIME_STAMP, and the
A-Cntr 0-12 counters

• A-Cntr 13-28 counters.
• B-Cntr 0-3 counters.
• C-Cntr 0-11 counters.

All

1 Specific Context Enable

Project: All
Default Value: 0h All contexts considered
Mask: MMIO(0x2000)#16
Format: U32 FormatDesc
Enables counters to work on a context specific workload. The context is given by bits 31:12

[DevSNB A] Must be set to ‘1’ (context aware)

Doc Ref #: IHD_OS_V1Pt3_3_10
 53

OACONTROL – Observation Architecture Control
Value Na me Description Project

0h Disable All contexts are considered All

1h Enable Only the contexts with the Select Context ID
are considered

All

0 Performance Counter

Enable
Project: All Format: Enable

Global performance counter enable. If clear, no counting will occur. MI_REPORT_PERF_COUNT is
undefined when clear.

When either the MI_REPORT_PERF_COUNT command is received or the internal Report Triggering logic fires following 64
byte cache lines are written to memory. There are five formats as defined by the Counter Select within the OACONTROL word.
The RPT_ID always stored in the lowest addressed DWord.

Counter Select = 000

A-Cntr 0 A-Cntr 1 A-Cntr 2 A-Cntr 3 A-Cntr 4 TIME_STAMP RPT_ID

A-Cntr 5 A-Cntr 6 A-Cntr 7 A-Cntr 8 A-Cntr 9 A-Cntr 10 A-Cntr 11 A-Cntr 12

Counter Select = 001

A-Cntr 0 A-Cntr 1 A-Cntr 2 A-Cntr 3 A-Cntr 4 TIME_STAMP RPT_ID

A-Cntr 5 A-Cntr 6 A-Cntr 7 A-Cntr 8 A-Cntr 9 A-Cntr 10 A-Cntr 11 A-Cntr 12

A-Cntr 13 A-Cntr 14 A-Cntr 15 A-Cntr 16 A-Cntr 17 A-Cntr 18 A-Cntr 19 A-Cntr 20

A-Cntr 21 A-Cntr 22 A-Cntr 23 A-Cntr 24 A-Cntr 25 A-Cntr 26 A-Cntr 27 A-Cntr 28

54 Doc Ref #: IHD_OS_V1Pt3_3_10

Counter Select = 010

A-Cntr 0 A-Cntr 1 A-Cntr 2 A-Cntr 3 A-Cntr 4 TIME_STAMP RPT_ID

A-Cntr 5 A-Cntr 6 A-Cntr 7 A-Cntr 8 A-Cntr 9 A-Cntr 10 A-Cntr 11 A-Cntr 12

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

C-Cntr 11 C-Cntr 10 C-Cntr 9 C-Cntr 8 C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4

Counter Select = 011

A-Cntr 0 A-Cntr 1 A-Cntr 2 A-Cntr 3 A-Cntr 4 TIME_STAMP RPT_ID

A-Cntr 5 A-Cntr 6 A-Cntr 7 A-Cntr 8 A-Cntr 9 A-Cntr 10 A-Cntr 11 A-Cntr 12

A-Cntr 13 A-Cntr 14 A-Cntr 15 A-Cntr 16 A-Cntr 17 A-Cntr 18 A-Cntr 19 A-Cntr 20

A-Cntr 21 A-Cntr 22 A-Cntr 23 A-Cntr 24 A-Cntr 25 A-Cntr 26 A-Cntr 27 A-Cntr 28

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

C-Cntr 11 C-Cntr 10 C-Cntr 9 C-Cntr 8 C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4

Counter Select = 100

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 INST ADD TIME_STAMP RPT_ID

C-Cntr 11 C-Cntr 10 C-Cntr 9 C-Cntr 8 C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4

Doc Ref #: IHD_OS_V1Pt3_3_10
 55

1.1.14.2 OASTATUS1 – Observation Architecture Status Register

OASTATUS1— Observation Architecture Status Register
Register Type: MMIO
Address Offset: 2364h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:6 Tail Ppointer
Project: All

Virtual address of the internal trigger based buffer and it is updated for every 64B cacheline write to memory
when reporting via internal trigger. This pointer will not be updated for MI_REPORT_PERF_COUNT command
based writes.
When OA is enabled, this address must be programmed by SW to the base address of the internal
trigger base mechanism.

5:3 Inter Trigger Report Buffer Size
Project: All
Default Value: 0h All context considered

This field indicates the size of buffer for internal trigger mechanism. This field is programmed in terms of
multiple of 4 pages (i.e. 16KB).

Value De scription Project

0b 16KB All

1b 32KB All

2 48KB All

3 64KB All

4 80KB All

5 96KB All

6 112KB All

7 128KB All

56 Doc Ref #: IHD_OS_V1Pt3_3_10

OASTATUS1— Observation Architecture Status Register
2 Counter OverFlow

Error
Project: All Format: Select

This bit is set if any of the counters overflows.
This bit can be reset by SW in B0.

1 Buffer Overflow
Project: All
Default Value: 0h
This bit is set when the Tail-pointer - Head pointer > max internal trigger buffer size

0 Report Lost Error Project: All Format: Enable
This bit is set if the Report Logic is requested to write out the counter values before the previous report
request was completed. The report request is ignored and the counter continue to count.
This bit can be reset by SW in B0.

1.1.14.3 OASTATUS2 – Observation Architecture Status Register

OASTATUS2— Observation Architecture Status Register
Register Type: MMIO
Address Offset: 2368h
Project: All
Default Value: 00000000h
Access: RO
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:6 Head Pointer
Project: All
Virtual address of the internal trigger based buffer that is updated by software after consuming from the
report buffer. This pointer must be updated by SW for internal trigger base buffer only.

5:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 57

1.1.14.4 OABUFFER – Observation Architecture Buffer

OABUFFER— Observation Architecture Status Register
Register Type: MMIO
Address Offset: 23B0h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

[DevSNB A{W/A}] This offset does not exist. Instead, the value is set during the tail address MMIO write to the same
data value as the tail address (0x2364).

[DevSNB C+] This MMIO must be set before the OASTATUS1 and OASTATUS2 registers

Bit De scription

31:6 Report Buffer Offset
Project: All
This field specifies 64B aligned GFX MEM address where the chap counter values are reported.

5:0 Reserved Project: All Format: MBZ

58 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.14.5 OASTARTTRIG1 – Observation Architecture Start Trigger

OASTARTTRIG1— Observation Architecture Buffer
Register Type: MMIO
Address Offset: 238Ch
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:16 Reserved Project: All Format: MBZ
15:0 Threshold Value Project: All Format: U16

Threshold value for the compare logic within the trigger logic

1.1.14.6 OASTARTTRIG2 – Observation Architecture Start Trigger

OASTARTTRIG2— Observation Architecture Start Trigger
Register Type: MMIO
Address Offset: 2388h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31 event select 3, to select between Boolean and NOA event for the counter 4 to count

0 NOA

1 Boolean

30 event select 2, to select between Boolean and NOA event for the counter 3 to count

0 NOA

1 Boolean

29 event select 1, to select between Boolean and NOA event for the counter 2 to count

0 NOA

1 Boolean

Doc Ref #: IHD_OS_V1Pt3_3_10
 59

OASTARTTRIG2— Observation Architecture Start Trigger

28 event select 0, to select between Boolean and NOA event for the counter 1 to count

0 NOA

1 Boolean

27:24 Reserved

23 Threshold Enable

Enable the threshold compare logic within the trigger logic.

22 Invert D Enable 0

Invert the specified signal at the D stage of the trigger logic.

21 Invert C Enable 1

Invert the specified signal at the C stage of the trigger logic.

20 Invert C Enable 0

Invert the specified signal at the C stage of the trigger logic.

19 Invert B Enable 3

Invert the specified signal at the B stage of the trigger logic.

18 Invert B Enable 2

Invert the specified signal at the B stage of the trigger logic.

17 Invert B Enable 1

Invert the specified signal at the B stage of the trigger logic.

16 Invert B Enable 0

Invert the specified signal at the B stage of the trigger logic.

15 Invert A Enable 15

Invert the specified signal at the A stage of the trigger logic.

14 Invert A Enable 14

Invert the specified signal at the A stage of the trigger logic.

13 Invert A Enable 13

Invert the specified signal at the A stage of the trigger logic.

60 Doc Ref #: IHD_OS_V1Pt3_3_10

OASTARTTRIG2— Observation Architecture Start Trigger

12 Invert A Enable 12

Invert the specified signal at the A stage of the trigger logic.

11 Invert A Enable 11

Invert the specified signal at the A stage of the trigger logic.

10 Invert A Enable 10

Invert the specified signal at the A stage of the trigger logic.

9 Invert A Enable 9

Invert the specified signal at the A stage of the trigger logic.

8 Invert A Enable 8

Invert the specified signal at the A stage of the trigger logic.

7 Invert A Enable 7

Invert the specified signal at the A stage of the trigger logic.

6 Invert A Enable 6

Invert the specified signal at the A stage of the trigger logic.

5 Invert A Enable 5

Invert the specified signal at the A stage of the trigger logic.

4 Invert A Enable 4

Invert the specified signal at the A stage of the trigger logic.

3 Invert A Enable 3

Invert the specified signal at the A stage of the trigger logic.

2 Invert A Enable 2

Invert the specified signal at the A stage of the trigger logic.

1 Invert A Enable 1

Invert the specified signal at the A stage of the trigger logic.

0 Invert A Enable 0

Invert the specified signal at the A stage of the trigger logic.

Doc Ref #: IHD_OS_V1Pt3_3_10
 61

1.1.14.7 OASTARTTRIG3 – Observation Architecture Start Trigger

OASTARTTRIG3— Observation Architecture Start Trigger
Register Type: MMIO
Address Offset: 2384h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:28 NOA Signal Select 15 Project: All Format: U4
Select 1 of the 16 input NOA signals

27:24 NOA Signal Select 14 Project: All Format: U4
Select 1 of the 16 input NOA signals

23:20 NOA Signal Select 13 Project: All Format: U4
Select 1 of the 16 input NOA signals

19:16 NOA Signal Select 12 Project: All Format: U4
Select 1 of the 16 input NOA signals

15:12 NOA Signal Select 11 Project: All Format: U4
Select 1 of the 16 input NOA signals

11:8 NOA Signal Select 10 Project: All Format: U4
Select 1 of the 16 input NOA signals

7:4 NOA Signal Select 9 Project: All Format: U4
Select 1 of the 16 input NOA signals

3:0 NOA Signal Select 8 Project: All Format: U4
Select 1 of the 16 input NOA signals

62 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.14.8 OASTARTTRIG4 – Observation Architecture Start Trigger

OASTARTTRIG4— Observation Architecture Start Trigger
Register Type: MMIO
Address Offset: 2380h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:28 NOA Signal Select 7 Project: All Format: U4
Select 1 of the 16 input NOA signals

27:24 NOA Signal Select 6 Project: All Format: U4
Select 1 of the 16 input NOA signals

23:20 NOA Signal Select 5 Project: All Format: U4
Select 1 of the 16 input NOA signals

19:16 NOA Signal Select 4 Project: All Format: U4
Select 1 of the 16 input NOA signals

15:12 NOA Signal Select 3 Project: All Format: U4
Select 1 of the 16 input NOA signals

11:8 NOA Signal Select 2 Project: All Format: U4
Select 1 of the 16 input NOA signals

7:4 NOA Signal Select 1 Project: All Format: U4
Select 1 of the 16 input NOA signals

3:0 NOA Signal Select 0 Project: All Format: U4
Select 1 of the 16 input NOA signals

Doc Ref #: IHD_OS_V1Pt3_3_10
 63

1.1.14.9 OAREPORTTRIG1 – Observation Architecture Report Trigger

OAREPORTTRIG1— Observation Architecture Report Trigger
Register Type: MMIO
Address Offset: 237Ch
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:16 Occurrence vs. Duration Select
Project: All
Format: Occurrence[16]
1 bit per NOA counter total 16 bits

Value Na me Description Project

0h Duration All

1h Occurence All
15:0 Threshold Value Project: All Format: U16

Threshold value for the compare logic within the trigger logic

64 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.14.10 OAREPORTTRIG2 – Observation Architecture Report Trigger

OAREPORTTRIG2— Observation Architecture Report Trigger
Register Type: MMIO
Address Offset: 2378h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:24 Reserved Project: All Format: MBZ

23 Threshold Enable

Enable the threshold compare logic within the trigger logic.

22 Invert D Enable 0

Invert the specified signal at the D stage of the trigger logic.

21 Invert C Enable 1

Invert the specified signal at the C stage of the trigger logic.

20 Invert C Enable 0

Invert the specified signal at the C stage of the trigger logic.

19 Invert B Enable 3

Invert the specified signal at the B stage of the trigger logic.

18 Invert B Enable 2

Invert the specified signal at the B stage of the trigger logic.

17 Invert B Enable 1

Invert the specified signal at the B stage of the trigger logic.

16 Invert B Enable 0

Invert the specified signal at the B stage of the trigger logic.

15 Invert A Enable 15

Invert the specified signal at the A stage of the trigger logic.

Doc Ref #: IHD_OS_V1Pt3_3_10
 65

OAREPORTTRIG2— Observation Architecture Report Trigger

14 Invert A Enable 14

Invert the specified signal at the A stage of the trigger logic.

13 Invert A Enable 13

Invert the specified signal at the A stage of the trigger logic.

12 Invert A Enable 12

Invert the specified signal at the A stage of the trigger logic.

11 Invert A Enable 11

Invert the specified signal at the A stage of the trigger logic.

10 Invert A Enable 10

Invert the specified signal at the A stage of the trigger logic.

9 Invert A Enable 9

Invert the specified signal at the A stage of the trigger logic.

8 Invert A Enable 8

Invert the specified signal at the A stage of the trigger logic.

7 Invert A Enable 7

Invert the specified signal at the A stage of the trigger logic.

6 Invert A Enable 6

Invert the specified signal at the A stage of the trigger logic.

5 Invert A Enable 5

Invert the specified signal at the A stage of the trigger logic.

4 Invert A Enable 4

Invert the specified signal at the A stage of the trigger logic.

3 Invert A Enable 3

Invert the specified signal at the A stage of the trigger logic.

2 Invert A Enable 2

Invert the specified signal at the A stage of the trigger logic.

66 Doc Ref #: IHD_OS_V1Pt3_3_10

OAREPORTTRIG2— Observation Architecture Report Trigger

1 Invert A Enable 1

Invert the specified signal at the A stage of the trigger logic.

0 Invert A Enable 0

Invert the specified signal at the A stage of the trigger logic.

1.1.14.11 OAREPORTTRIG3 – Observation Architecture Report Trigger

OAREPORTRIG3— Observation Architecture Report Trigger
Register Type: MMIO
Address Offset: 2374h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:28 NOA Signal Select 15 Project: All Format: U4
Select 1 of the 16 input NOA signals

27:24 NOA Signal Select 14 Project: All Format: U4
Select 1 of the 16 input NOA signals

23:20 NOA Signal Select 13 Project: All Format: U4
Select 1 of the 16 input NOA signals

19:16 NOA Signal Select 12 Project: All Format: U4
Select 1 of the 16 input NOA signals

15:12 NOA Signal Select 11 Project: All Format: U4
Select 1 of the 16 input NOA signals

11:8 NOA Signal Select 10 Project: All Format: U4
Select 1 of the 16 input NOA signals

7:4 NOA Signal Select 9 Project: All Format: U4
Select 1 of the 16 input NOA signals

3:0 NOA Signal Select 8 Project: All Format: U4
Select 1 of the 16 input NOA signals

Doc Ref #: IHD_OS_V1Pt3_3_10
 67

1.1.14.12 OAREPORTTRIG4 – Observation Architecture Report Trigger

OAREPORTRIG4— Observation Architecture Report Trigger
Register Type: MMIO
Address Offset: 2370h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:28 NOA Signal Select 7 Project: All Format: U4
Select 1 of the 16 input NOA signals

27:24 NOA Signal Select 6 Project: All Format: U4
Select 1 of the 16 input NOA signals

23:20 NOA Signal Select 5 Project: All Format: U4
Select 1 of the 16 input NOA signals

19:16 NOA Signal Select 4 Project: All Format: U4
Select 1 of the 16 input NOA signals

15:12 NOA Signal Select 3 Project: All Format: U4
Select 1 of the 16 input NOA signals

11:8 NOA Signal Select 2 Project: All Format: U4
Select 1 of the 16 input NOA signals

7:4 NOA Signal Select 1 Project: All Format: U4
Select 1 of the 16 input NOA signals

3:0 NOA Signal Select 0 Project: All Format: U4
Select 1 of the 16 input NOA signals

68 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.14.13 CEC0-0 – Customizable Event Creation

CEC0-0— Customizable Event Creation
Register Type: MMIO
Address Offset: 2390h
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:21 Reserved Project: [DevSNB] Format: MBZ
20:19 Clock Domain Project: DevSNB Format: U2

Selects clock domains for DELAY flops and BOOLEAN EVENT flops. The encoding of this field is
device specific.

Value Na me Description Project

000b crclk All

001b Reserved All

010b hclk All

011b Reserved All

100b mcclk All

101b Reserved All

110b lgclk All

111b Reserved All
20:19 Reserved Project: Format: MBZ
18:3 Compare Value Project: All Format: U16

Bit field LSB corresponds to NOA bit 0. This field is loaded to compare against the 8 NOA signals that
are fed into this block. The type of comparison that is done is controlled by the Compare Function.
When the compare function is true, then the signal for the NOA event is asserted. This in turn can be
counted by any of the CHAP counters.

Doc Ref #: IHD_OS_V1Pt3_3_10
 69

CEC0-0— Customizable Event Creation
2:0 Compare Function Project: All Format: U3

Value Na me Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or Equal Compare and assert output if greater than or equal All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or Equal Compare and assert output if less than or equal All

111b Reserved All

70 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.14.14 CEC0-1 – Customizable Event Creation

CEC0-1— Customizable Event Creation
Register Type: MMIO
Address Offset: 2394h
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:16 Considerations Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. 0: The NOA bit is considered in event calculations. 1: The NOA
bit is delayed by 1 clock before considering it in event calculations. This is particularly useful for doing
state machine arc coverage. For example, NOA bits 3:0 and NOA 7:4 could be programmed to the
same 4 present state, state machine signals. The appropriate inversion selections would be made
depending on which state transition is of interest. Bits 31:28 in the delay selection would be
programmed to "1111", indicating use a pipe delayed version of the state signals. The resulting "AND"
of the now preconditioned NOA 7:4 and NOA 3:0 signals would indicate the number of times the arc of
interest was taken. This could be recorded with the CHAP counters.

15:0 Mask Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. These 8 bits are used to mask off entries from the comparison.
For each bit: 0: This NOA bit is considered in event calculations. 1: This NOA bit is ignored in event
calculations.

Doc Ref #: IHD_OS_V1Pt3_3_10
 71

1.1.14.15 CEC1-0 – Customizable Event Creation

CEC1-0— Customizable Event Creation
Register Type: MMIO
Address Offset: 2398h
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:21 Reserved Project: All Format: MBZ
20:19 Clock Domain Project: [DevSN

B]
Format: U2

Selects clock domains for DELAY flops and BOOLEAN EVENT flops. The encoding of this field is
device specific.

Value Na me Description Project

000b crclk All

001b Reserved All

010b hclk All

011b Reserved All

100b mcclk All

101b Reserved All

110b lgclk All

111b Reserved All
20:19 Reserved Project: Format: MBZ
18:3 Compare Value Project: All Format: U16

Bit field LSB corresponds to NOA bit 0. This field is loaded to compare against the 8 NOA signals that
are fed into this block. The type of comparison that is done is controlled by the Compare Function.
When the compare function is true, then the signal for the NOA event is asserted. This in turn can be
counted by any of the CHAP counters.

72 Doc Ref #: IHD_OS_V1Pt3_3_10

CEC1-0— Customizable Event Creation
2:0 Compare Function Project: All Format: U3

Value Na me Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or Equal Compare and assert output if greater than or equal All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or Equal Compare and assert output if less than or equal All

111b Reserved All

1.1.14.16 CEC1-1 – Customizable Event Creation

CEC1-1— Customizable Event Creation
Register Type: MMIO
Address Offset: 239Ch
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:16 Considerations Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. 0: The NOA bit is considered in event calculations. 1: The NOA
bit is delayed by 1 clock before considering it in event calculations. This is particularly useful for doing
state machine arc coverage. For example, NOA bits 3:0 and NOA 7:4 could be programmed to the
same 4 present state, state machine signals. The appropriate inversion selections would be made
depending on which state transition is of interest. Bits 31:28 in the delay selection would be
programmed to "1111", indicating use a pipe delayed version of the state signals. The resulting "AND"
of the now preconditioned NOA 7:4 and NOA 3:0 signals would indicate the number of times the arc of
interest was taken. This could be recorded with the CHAP counters.

15:0 Mask Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. These 8 bits are used to mask off entries from the comparison.
For each bit: 0: This NOA bit is considered in event calculations. 1: This NOA bit is ignored in event
calculations.

Doc Ref #: IHD_OS_V1Pt3_3_10
 73

1.1.14.17 CEC2-0 – Customizable Event Creation

CEC2-0— Customizable Event Creation
Register Type: MMIO
Address Offset: 23A0h
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:21 Reserved Project: All Format: MBZ
20:19 Clock Domain Project: [DevSN

B]
Format: U2

Selects clock domains for DELAY flops and BOOLEAN EVENT flops. The encoding of this field is
device specific.

Value Na me Description Project

000b crclk All

001b Reserved All

010b hclk All

011b Reserved All

100b mcclk All

101b Reserved All

110b lgclk All

111b Reserved All
20:19 Reserved Project: Format: MBZ
18:3 Compare Value Project: All Format: U16

Bit field LSB corresponds to NOA bit 0. This field is loaded to compare against the 8 NOA signals that
are fed into this block. The type of comparison that is done is controlled by the Compare Function.
When the compare function is true, then the signal for the NOA event is asserted. This in turn can be
counted by any of the CHAP counters.

74 Doc Ref #: IHD_OS_V1Pt3_3_10

CEC2-0— Customizable Event Creation
2:0 Compare Function Project: All Format: U3

Value Na me Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or Equal Compare and assert output if greater than or equal All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or Equal Compare and assert output if less than or equal All

111b Reserved All

1.1.14.18 CEC2-1 – Customizable Event Creation

CEC2-1— Customizable Event Creation
Register Type: MMIO
Address Offset: 23A4h
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:16 Considerations Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. 0: The NOA bit is considered in event calculations. 1: The NOA
bit is delayed by 1 clock before considering it in event calculations. This is particularly useful for doing
state machine arc coverage. For example, NOA bits 3:0 and NOA 7:4 could be programmed to the
same 4 present state, state machine signals. The appropriate inversion selections would be made
depending on which state transition is of interest. Bits 31:28 in the delay selection would be
programmed to "1111", indicating use a pipe delayed version of the state signals. The resulting "AND"
of the now preconditioned NOA 7:4 and NOA 3:0 signals would indicate the number of times the arc of
interest was taken. This could be recorded with the CHAP counters.

15:0 Mask Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. These 8 bits are used to mask off entries from the comparison.
For each bit: 0: This NOA bit is considered in event calculations. 1: This NOA bit is ignored in event
calculations.

Doc Ref #: IHD_OS_V1Pt3_3_10
 75

1.1.14.19 CEC3-0 – Customizable Event Creation

CEC3-0— Customizable Event Creation
Register Type: MMIO
Address Offset: 23A8h
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:21 Reserved Project: All Format: MBZ
20:19 Clock Domain Project: All Format: U2

Selects clock domains for DELAY flops and BOOLEAN EVENT flops. The encoding of this field is
device specific.

Value Na me Description Project

000b crclk All

001b Reserved All

010b hclk All

011b Reserved All

100b mcclk All

101b Reserved All

110b lgclk All

111b Reserved All
20:19 Reserved Project: Format: MBZ
18:3 Compare Value Project: All Format: U16

Bit field LSB corresponds to NOA bit 0. This field is loaded to compare against the 8 NOA signals that
are fed into this block. The type of comparison that is done is controlled by the Compare Function.
When the compare function is true, then the signal for the NOA event is asserted. This in turn can be
counted by any of the CHAP counters.

76 Doc Ref #: IHD_OS_V1Pt3_3_10

CEC3-0— Customizable Event Creation
2:0 Compare Function Project: All Format: U3

Value Na me Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or Equal Compare and assert output if greater than or equal All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or Equal Compare and assert output if less than or equal All

111b Reserved All

Doc Ref #: IHD_OS_V1Pt3_3_10
 77

1.1.14.20 CEC3-1 – Customizable Event Creation

CEC3-1— Customizable Event Creation
Register Type: MMIO
Address Offset: 23ACh
Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:16 Considerations Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. 0: The NOA bit is considered in event calculations. 1: The NOA
bit is delayed by 1 clock before considering it in event calculations. This is particularly useful for doing
state machine arc coverage. For example, NOA bits 3:0 and NOA 7:4 could be programmed to the
same 4 present state, state machine signals. The appropriate inversion selections would be made
depending on which state transition is of interest. Bits 31:28 in the delay selection would be
programmed to "1111", indicating use a pipe delayed version of the state signals. The resulting "AND"
of the now preconditioned NOA 7:4 and NOA 3:0 signals would indicate the number of times the arc of
interest was taken. This could be recorded with the CHAP counters.

15:0 Mask Project: All Format: U32
Bit field LSB corresponds to NOA bit 0. These 8 bits are used to mask off entries from the comparison.
For each bit: 0: This NOA bit is considered in event calculations. 1: This NOA bit is ignored in event
calculations.

78 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.14.21 OANOASELECT – Observation Architecture NOA select [DevSNB]

OANOASELECT— Observation Architecture NOA Select
Register Type: MMIO
Address Offset: 236Ch
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32
This register is used to program the OA unit.

Bit De scription

31:0 Rerserved Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
29:28 NOA Select Bits for Counter 14 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
27:26 NOA Select Bits for Counter 13 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All

Doc Ref #: IHD_OS_V1Pt3_3_10
 79

OANOASELECT— Observation Architecture NOA Select
25:24 NOA Select Bits for Counter 12 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
23:22 NOA Select Bits for Counter 11 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
21:20 NOA Select Bits for Counter 10 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
19:18 NOA Select Bits for Counter 9 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All

80 Doc Ref #: IHD_OS_V1Pt3_3_10

OANOASELECT— Observation Architecture NOA Select
17:16 NOA Select Bits for Counter 8 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
15:14 NOA Select Bits for Counter 7 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
13:12 NOA Select Bits for Counter 6 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
11:10 NOA Select Bits for Counter 5 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All

Doc Ref #: IHD_OS_V1Pt3_3_10
 81

OANOASELECT— Observation Architecture NOA Select
9:8 NOA Select Bits for Counter 4 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
7:6 NOA Select Bits for Counter 3 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
5:4 NOA Select Bits for Counter 2 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All
3:2 NOA Select Bits for Counter 1 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All

82 Doc Ref #: IHD_OS_V1Pt3_3_10

OANOASELECT— Observation Architecture NOA Select
1:0 NOA Select Bits for Counter 0 Project: All

Value Na me Description Project

00b csclk NOA FM CS clk All

01b crclk NOA FM CR clk All

10b crmclk NOA FM CRM clk All

11b Reserved All

Doc Ref #: IHD_OS_V1Pt3_3_10
 83

1.1.15 Frame Buffer Compression Control ([DevCL] Only)

This section describes the registers associated with the Frame Buffer Compression function. The primary motivation of FBC is
power savings and thus it is only applicable to the Mobile Product.

Programming Notes:

• Frame buffer compression has to be disabled (via FBC_CONTROL[31] = 0), and software has to wait until compression
not in progress (FBC_STATUS[31] == 0) before changing any of the following fields:

o FBC_CFB_BASE

o FBC_LL_BASE

o FBC_CONTROL[Mode Select]

o FBC_CONTROL[Compressed Frame Buffer Stride]

o FBC_CONTROL[Fence Number]

1.1.15.1 FBC_CFB_BASE — Compressed Frame Buffer Base Address

FBC_CFB_BASE — Compressed Frame Buffer Base Address
Register Type: MMIO
Address Offset: 3200h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
This register specifies the physical memory address at which the Compressed Frame Buffer is located. Note that the
Compressed Frame Buffers must be in Non Cacheable memory and not relocated while FBC is active.

Bit De scription

31:12 Compressed Frame Buffer Address
Project: DevCL
Default Value: 0h
Address: PhysicalAddress[31:12]
This register specifies Bits 31:12 of the physical address of the Compressed Frame Buffer.

Programming Notes

Software must guarantee that the Compressed Frame Buffer is stored in contiguous physical
memory. The buffer must be 4K byte aligned. This field should not be changed unless FBC is
inactive (the first VBlank start after Enable Frame Buffer Compression has been cleared.)

11:0 Reserved Project: DevCL Format: MBZ

84 Doc Ref #: IHD_OS_V1Pt3_3_10

1.1.15.2 FBC_LL_BASE — Compressed Frame Line Length Buffer Address

FBC_LL_BASE — Compressed Frame Line Length Buffer Address
Register Type: MMIO
Address Offset: 3204h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
This register specifies the physical memory address at which the Compressed Frame Line Length Buffer is located.
Note that the Compressed Frame Buffers must be in Non Cacheable memory and not relocated while FBC is
active.

Bit De scription

31:12 Compressed Frame Line Length Buffer Address
Project: DevCL
Default Value: 0h
Address: PhysicalAddress[31:12]
This register specifies Bits 31:12 of the physical address of the Compressed Frame Line Length
Buffer.

Programming Notes

Software must guarantee that the Compressed Frame Line Length Buffer is stored in contiguous
physical memory. The buffer must be 4K byte aligned. This field should not be changed unless FBC
is inactive (the first VBlank start after Enable Frame Buffer Compression has been cleared.)

11:0 Reserved Project: DevCL Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 85

1.1.15.3 FBC_CONTROL — Frame Buffer Compression Control Register

FBC_CONTROL — Frame Buffer Compression Control Register
Register Type: MMIO
Address Offset: 3208h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
This register is used to control the operation of RLE-FBC.

Bit De scription

31 Enable Frame Buffer Compression
Project: DevCL
Default Value: 0h
Format: Enable
This bit is used to globally enable or disable the RLE-FBC function (compression and decompression)
at the next VBlank start.

Value Na me Description Project

0h Disable Disable frame buffer compression. DevCL

1h Enable Enable frame buffer compression. DevCL
30 Mode Select

Project: DevCL
Default Value: 0h
Format: U1

Value Na me Description Project

0h Single Pass Single Pass mode DevCL

1h Periodic Pass Periodic mode DevCL
29:16 Interval

Project: DevCL
Default Value: 0h
Format: U14
Range [1,16383]
This is interval for which the compressor waits between passes. In Periodic Mode this field determines
the interval length, in terms of frames (VBlanks).

Zero is an illegal value.

86 Doc Ref #: IHD_OS_V1Pt3_3_10

FBC_CONTROL — Frame Buffer Compression Control Register
15 Stop Compressing on

Modification (DEBUG ONLY)
Project: DevCL Format: Enable

If set to ‘1’ the compressor will abort a subsequent compressing pass when any modification to the
source frame buffer is detected.

14 Uncompressible Enable Project: DevCL Format: Enable
If set to a ‘1’ the compressor marks as "Uncompressible 10" (see the FBC_TAG register) if any
scanline in a pair cannot be compressed. In Default mode Uncompressible mode is turned off.

13 Reserved Project: DevCL Format: MBZ
12:5 Compressed Frame

Buffer Stride
Project: DevCL Format: (Stride in 64Byte units) – 1

This is the stride for the compressed frame buffer. This value is used to determine the line-to-line
increment for the compressed frame buffer. Lines that cannot be compressed to a stride size or less
are not compressed at all.

This field must be set to a value less than or equal to the stride of the source (uncompressed) frame
buffer.

00h = 64B stride
4 Reserved Project: DevCL Format: MBZ

3:0 Fence Number Project: DevCL Format: U3
This field specifies the FENCE number corresponding to the placement of the uncompressed frame
buffer. (Note that only tiled frame buffers can be compressed). This field is double buffered in
hardware. Only the host accesses the uncompressed frame buffer using a fence.

1.1.15.4 FBC_COMMAND — Frame Buffer Compression Command Register

FBC_COMMAND — Frame Buffer Compression Command Register
Register Type: MMIO
Address Offset: 320Ch
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
This register is used to request a frame buffer compression pass while in Single Pass mode.

Bit De scription

31:1 Reserved Project: DevCL Format: MBZ
0 Compress Enable Project: DevCL Format: Enable

Software can set this bit to trigger compression in Single Pass mode. The compressor clears this bit
after the compression pass is completed. This bit is ignored in Periodic Mode (i.e., it will not cause a
compression pass and will always read as ‘0’).

Doc Ref #: IHD_OS_V1Pt3_3_10
 87

1.1.15.5 FBC_STATUS — Frame Buffer Compression Status Register

FBC_STATUS — Frame Buffer Compression Status Register
Register Type: MMIO
Address Offset: 3210h
Project: DevCL
Default Value: 2000 0000h
Access: RO / R/W
Size (in bits): 32
This register contains status information associated with the RLE-FBC function. The information is read-only in normal
operation, though some fields can be programmed as a TEST MODE.

Bit De scription

31 Compressing
Project: DevCL
Security: RO
Default Value: 0h
Format: Flag
This status bit indicates that the device is currently within a compression pass.

30 Compressed
Project: DevCL
Security: RO normally, R/W TEST MODE
Default Value: 0h
Format: Flag
This bit indicates that a compressed frame buffer is available at the address contained in the
FB_CFB_BASE register.
In normal operation the compressor sets this bit when it has completed the compression pass. During
compression this bit is not set.
As a test mode this bit can be set if there is a software-created compressed buffer available at the
address in the FB_CFB_BASE register. Test-Mode software must check that compression is not in
progress before setting this bit. If RLE-FBC is enabled, the compressor will clear this bit when it starts
the next recompression pass.

88 Doc Ref #: IHD_OS_V1Pt3_3_10

FBC_STATUS — Frame Buffer Compression Status Register
29 Any Modified

Project: DevCL
Security: RO normally, R/W TEST MODE
Default Value: 1h
Format: Flag
1 = (default) Indicates that the frame buffer has been modified since the last compression pass. The

compressor sets this bit on the first write to the frame buffer from the application/driver or upon an
allocation within the render cache (e.g., as a result of Blt, 3D or MPEG activity). The fence number
and frame buffer base address are used to determine if a write modified the frame buffer. The bit
is cleared by the compressor at the start of the next compression pass.

In normal operation this bit is read only (software must not write this bit) and defaults to a “1”.
As a test mode this bit can be set if there is a software-created compressed buffer with modified lines
available at the address contained the FB_CFB_BASE register. SW must check that compression is
not in progress before setting this bit. If enabled, the compressor will clear this bit when it initiates the
next compression pass. This test mode is used for continuous-mode compression testing.

28:11 Reserved Project: DevCL Format: MBZ
10:0 Current Line Compressing

Project: DevCL
Security: RO
Default Value: 0h
Format: U11
This read only field indicates the line number that the compressor is currently processing.
If this field is 0 and the Compressing bit (Bit 31) is set, the compressor is currently on display frame
line 1.

1.1.15.6 FBC_CONTROL2— Frame Buffer Compression 2nd Control Register

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
Register Type: MMIO
Address Offset: 3214h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
This register is used to control the operation of RLE-FBC.

Bit De scription

31:3 Reserved Project: DevCL Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 89

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
4 Double Buffer FBC Fence and Fence_DisplayY Offset Register Fields

Project: DevCL
Default Value: 0h
Format: Disable

Value Na me Description Project

0h Double buffer DevCL

1h Don’t double buffer DevCL
3:2 FBC C3 Mode

Project: DevCL
Default Value: 0h
Format: U2

Value Na me Description Project

00 FBC IDLENESS is not looked at in order to enter Self
Refresh

DevCL

01
FBC IDLENESS is looked at in order to enter Self
Refresh

DevCL

10 FBC IDLENESS is looked at in order to enter Self
Refresh. But FBC enters IDLE as it finishes
compressing the current scanline pair and enters
IDLE as soon as csunit asserts the inc3 signal.

DevCL

11 Reserved Reserved DevCL
1 CPU Fence enable

Project: DevCL
Default Value: 0h
Format: Enable

Value Na me Description Project

0h Display Buffer is not in a CPU fence. No modifications
are expected from CPU to the Display Buffer.

DevCL

1h Display Buffer exists in a CPU fence. DevCL

90 Doc Ref #: IHD_OS_V1Pt3_3_10

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
0 Frame Buffer Compression Display Plane Select A/B

Project: DevCL
Default Value: 0h
Format: Flag

Value Na me Description Project

0h Enable frame buffer compression on Plane A. All

1h Enable frame buffer compression on Plane B. All

Programming Notes Project

Before changing this bit s/w needs to make sure that FBC is disabled and the
“COMPRESSING” bit in the FBC_CONTROL register comes to a “0”.

DevCL

1.1.15.7 FBC_DISPYOFF — FBC Fence Display Buffer Y offset

FBC_DISPYOFF — FBC Fence Display Buffer Y offset
Register Type: MMIO
Address Offset: 321Bh
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
Desc

Bit De scription

31:12 Reserved Project: DevCL Format: MBZ
11:0 Fence_YDisp Project: DevCL Format: U12

Y offset from the fence to the Display Buffer base

Doc Ref #: IHD_OS_V1Pt3_3_10
 91

1.1.15.8 FBC_MOD_NUM— FBC Number of Modifications for Recompression

FBC_MOD_NUM— FBC Number of Modifications for Recompression
Register Type: MMIO
Address Offset: 3220h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
Trusted Type: 1
The purpose of this register is to avoid SR exit unless the programmed number of modifications have been made to the
Display buffer.

Bit De scription

31:1 FBC_Mod_Num Project: DevCL Format: U12
Number of modifications to the display buffer required before recompression is attempted.

If the number of modifications to the Frame Buffer is not equal to the programmed count value at the
end of the interval, re-compression is not attempted.

0 FBC_Mod_Num_Valid Project: DevCL Format: Flag
Only if this bit is set will the above count value be looked at.

1.1.15.9 FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
Register Type: MMIO
Address Offset: 3300h
Project: All
Default Value: 00000000h;
Access: R/W
Size (in bits): 49x32
Trusted Type: 1

The device implements 49 DWords of Tag data for RLE-FBC compression. Each DWord contains storage for a 2-bit
Tag value associated with a frame buffer line pair.

49 DWords are required to support the required 1536 display lines (= 48 x 32), as an extra DWord may be required due
to the alignment of the source (uncompressed) frame buffer. I.e., if the source frame buffer starts on an odd tile line,
line 0 corresponds to bit 1 of 3300 (bit 0 is unused) and the 49th DWord may be required. If the source frame buffer
starts on an even tile line, line 0 corresponds to bit 0 of 3300.

92 Doc Ref #: IHD_OS_V1Pt3_3_10

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
DWord Bit Description

0..48 31:30 Tag for lines 30&31 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

29:28 Tag for lines 29&28 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

27:26 Tag for lines 27&26 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

25:24 Tag for lines 25&24 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

23:22 Tag for lines 23&22 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

21:20 Tag for lines 21&20 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

19:18 Tag for lines 19&18 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

17:16 Tag for lines 17&16 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

15:14 Tag for lines 15&14 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

13:12 Tag for lines 13&12 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

11:10 Tag for lines 11&10 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

9:8 Tag for lines 9&8 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

7:6 Tag for lines 7&6 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

5:4 Tag for lines 5&4 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

3:2 Tag for lines 3&2 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

1:0 Tag for lines 1&0 Project: All Format: FBC Tag
For lines: (DWord) + 30 and (DWord) + 31

Doc Ref #: IHD_OS_V1Pt3_3_10
 93

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
31:0 Tag for lines DW# + 1&0

Project: All
Format: FBC Tag See below
For lines: (DWord) + 30 and (DWord) + 31

Value Na me Description Project

00 Modified At least one of the associated lines was modified
since the last compression pass started.

All

01 Uncompressed The associated lines are uncompressed and are
candidate for compression in the next pass

All

10 Uncompressible The associated lines are uncompressible and
are not candidate for compression in the next
pass.

All

11 Compressed The associated lines are compressed All

94 Doc Ref #: IHD_OS_V1Pt3_3_10

1.2 Fence Registers

1.2.1 FENCE — Graphics Memory Fence Table Registers

FENCE — Graphics Memory Fence Table Registers
Register Type: MMIO
Address Offset: 3000h
Project: All
Default Value: 00000000h;
Access: R/W
Size (in bits): 16x64
Trusted Type: 1

Address Offset: 03000h – 03007h: FENCE_0
 :
 :

 0307Ch – 0307Fh: FENCE_15

The graphics device performs address translation from linear space to tiled space for a CPU access to graphics memory
(See Memory Interface Functions chapter for information on these memory layouts) using the fence registers. Note that
the fence registers are used only for CPU accesses to gfx memory. Graphics rendering/display pipelines use Per
Surface Tiling (PST) parameters (found in SURFACE_STATE – see the Sampling Engine chapter) to access tiled gfx
memory.

The intent of tiling is to locate graphics data that are close (in X and Y surface axes) in one physical memory page
while still locating some amount of line oriented data sequentially in memory for display efficiency. All 3D rendering
is done such that the QWords of any one span are all located in the same memory page, improving rendering
performance. Applications view surfaces as linear, hence when the cpu access a surface that is tiled, the gfx hardware
must perform linear to tiled address conversion and access the correct physical memory location(s) to get the data.

Tiled memory is supported for rendering and display surfaces located in graphics memory. A tiled memory surface is a
surface that has a width and height that are subsets of the tiled region’s pitch and height. The device maintains the
constants required by the memory interface to perform the address translations. Each tiled region can have a different
pitch and size. The CPU-memory interface needs the surface pitch and tile height to perform the address translation. It
uses the GMAddr (PCI-BAR) offset address to compare with the fence start and end address, to determine if the
rendering surface is tiled. The tiled address is generated based on the tile orientation determined from the matching
fence register. Fence ranges are at least 4 KB aligned. Note that the fence registers are used only for CPU accesses to
graphics memory.

A Tile represents 4 KB of memory. Tile height is 8 rows for X major tiles and 32 rows for Y major tiles. Tile Pitch is
512Bs for X major tiles and 128Bs for Y major tiles. The surface pitch is programmed in 128B units such that the pitch
is an integer multiple of “tile pitch”.

Engine restrictions on tile surface usage are detailed in Surface Placement Restrictions (Memory Interface Functions).
Note that X major tiles can be used for Sampler, Color, Depth, motion compensation references and motion
compensation destination, Display, Overlay, GDI Blt source and destination surfaces. Y major tiles can be used for
Sampler, depth, color and motion compensation assuming they do not need to be displayed. GDI Blit operations,
overlay and display cannot used Tiled Y orientations.

A “PST” graphics surface that will also be accessed via fence needs its base address to be tile row aligned.

Doc Ref #: IHD_OS_V1Pt3_3_10
 95

FENCE — Graphics Memory Fence Table Registers

Hardware handles the flushing of any pending cycles when software changes the fence upper/lower bounds.

Fence Table Registers occupy the address range specified above. Each Fence Table Register has the following format.

FENCE registers are not reset by a graphics reset. They will maintain their values unless a full chipset reset is
performed.

DWord Bit Description

0..15 63:44 Fence Upper Bound
Project: All
Address: GraphicsAddress[31:12]
Bits 31:12 of the ending Graphics Address of the fence region. Fence regions must be
aligned to a 4KB page. This address represents the last 4KB page of the fence region
(Upper Bound is included in the fence region).

Graphics Address is the offset within GMADR space.
45:32 Reserved Project: All Format: MBZ
31:12 Fence Lower Bound

Project: All
Address: GraphicsAddress[31:12]
Bits 31:12 of the starting Graphics Address of the fence region. Fence regions must be
aligned to 4KB. This address represents the first 4KB page of the fence region (Lowe
Bound is included in the fence region).

Graphics Address is the offset within GMADR space.
11:2 Fence Pitch

Project: All
Default Value: 0h DefaultVaueDesc
Format: U10-1 Width in 128 bytes
This field specifies the width (pitch) of the fence region in multiple of “tile width”. For Tile X
this field must be programmed to a multiple of 512B (“003” is the minimum value) and for
Tile Y this field must be programmed to a multiple of 128B (“000” is the minimum value).

000h = 128B
001h = 256B
...
3FFh = 128KB

96 Doc Ref #: IHD_OS_V1Pt3_3_10

FENCE — Graphics Memory Fence Table Registers
1 Tile Walk

Project: All
Format: MI_TileWalk
This field specifies the spatial ordering of QWords within tiles.

Value Na me Description Project

0h MI_TILE_XMAJOR Consecutive SWords (32 Bytes) sequenced
in the X direction

All

1h MI_TILE_YMAJOR Consecutive OWords (16 Bytes) sequenced
in the Y direction

All

0 Fence Valid

Project: All
Format: MI_ FenceValid
This field specifies whether or not this fence register defines a fence region.

Value Na me Description Project

0h MI_FENCE_INVALID All

1h MI_FENCE_VALID All

1.3 Memory Interface Commands for Rendering Engine

1.3.1 Introduct ion

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of their use. The functions
performed by these commands are discussed fully in the Memory Interface Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for Rendering Engine” in the title
has been added to differentiate this chapter from a similar one describing the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Gen4+ family. However, slight changes may be
present in some commands (i.e., for features added or removed), or some commands may be removed entirely.

Doc Ref #: IHD_OS_V1Pt3_3_10
 97

1.3.2 Software Synchronization Commands

To support mid-triangle interruption, certain commands need to be placed in a temporary location in hardware until primitive
commands are complete. This introduces out-of-order command execution. Below show the commands that are affected. Note
that the INSTPM register has a bit that is used to force in-order execution.

Command Qualifications

MI_NOOP When writing to the NOOPID register

MI_USER_INTERRUPT Always

MI_PROBE Writing out new value after check

MI_UNPROBE Always

MI_SEMAPHORE_MBOX Memory write

MI_STORE_DATA_IMM Always

MI_STORE_DATA_INDEX Always

MI_LOAD_REGISTER_IMM Always

MI_UPDATE_GTT Always

MI_STORE_REGISTER_MEM Register read is done in-order, register write done out-of-order

98 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.3 MI_ARB_CHECK

MI_ARB_CHECK
Project: All Length Bias: 1
Engine: Render

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head pointer (register UHPTR).
This instruction can be used to pre-empt the current execution of the ring buffer. Note that the valid bit in the updated
head pointer register needs to be set for the command streamer to be pre-empted.

Programming Note:

• The current head pointer is loaded with the updated head pointer register independent of the location of the
updated head

• If the current head pointer and the updated head pointer register are equal, hardware will automatically reset
the valid bit corresponding to the UHPTR

• For Gen6 this instruction can be placed only in a ring buffer, never in a batch buffer. For Gen7+ it can be in
either a ring buffer or batch buffer.

• For pre-emption, the wrap count in the ring buffer head register is no longer maintained by hardware. The
hardware updates the wrap count to the value in the UHPTR register.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 05h MI_ARB_CHECK Format: OpCode

22:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 99

1.3.4 MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: All Length Bias: 1
Engine: Render

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch buffer
initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 0Ah MI_ BATCH_BUFFER_END Format: OpCode

22:0 Reserved Project: All Format: MBZ
1 31:0 Semaphore Data Dword

Data dword to compare memory. The Data dword is supplied by software to control
execution of the command buffer. If the compare is enabled and the data at Semaphore
Address is greater than this dword, the execution of the command buffer should continue.

2 31:3 Semaphore Address

Qword address to fetch Data Dword(DW0) from memory.
HW will compare the Data Dword(DW0) with Semaphore Data Dword

2:0 Reserved Project: All Format: MBZ

100 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.5 MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: All Length Bias: 2
Engine: Render

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.
For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter of MI
Functions.

Programming Notes:

• Batch buffers referenced with physical addresses must not extend beyond the end of the starting physical page
(can’t span physical pages). However, a batch buffer initiated using a physical address can chain to another
buffer in another physical page.

• A batch buffer initiated with this command must end either with a MI_BATCH_BUFFER_END command or
by chaining to another batch buffer with an MI_BATCH_BUFFER_START command.

• For virtual batch buffers, it is essential that the address location beyond the current page be populated inside
the GTT. HW performs over-fetch of the command addresses and any over-fetch requires a valid TLB entry.
A single extra page beyond the batch buffer is sufficient.

• Prior to sending batch buffer start command with clear command buffer enable set, software has to ensure
pipe is flushed explicitly by sending MI_FLUSH or PIPE_CONTROL with CS Stall set..

• The dword following this command in the batch buffer should always be MI_NOOP.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 31h MI_BATCH_BUFFER_START Format: OpCode

22:13 Reserved Project: All Format: MBZ
12 Batch Buffer

Encrypted Memory
Read Enable

Project: All Format: U1

The Command Streamer will request batch buffer data from serpent memory if this bit is
enabled. If disabled then the batch buffer will be fetched from non-encrypted memory.

Commands in the Table 3-7 Priviledged Commands are not allowed from Encryped Batch
Buffers and will be turned into NOOP commands in the command streamer. Any write that is
generated from the encrypted batch buffer will write encrypted data.

11 Clear Command
Buffer Enable

Project: All Format: U1

The following batch buffer is to be executed from the Write Once protected memory area.
The address of the batch buffer is an offset into the WOPCM area. This batch buffer needs
to be pre-ceded by a MI_FLUSH command or PIPE_CONTROL with CS Stall set.

10:9 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 101

MI_BATCH_BUFFER_START
8 Buffer Security and Address Space Indicator

Project: All
Format: MI_BufferSecurityType
When this command is executed directly from a ring buffer, this field is used to specify the
associated batch buffer as a secure or non-secure buffer. Certain operations (e.g.,
MI_STORE_DATA_IMM commands to privileged memory) are prohibited within non-
secure buffers. See Batch Buffer Protection in the Device Programming Interface chapter
of MI Functions. When this command is executed from within a batch buffer (i.e., is a
“chained” batch buffer command), this field is IGNORED and the next buffer in the chain
inherits the initial buffer’s security characteristics.

Value Na me Description Project

0h MI_BUFFER_
SECURE

This batch buffer is secure and will be accessed
via the GGTT.

All

Programming Notes Project

Notes All

Errata De scription Project

Desc All
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total - Bias

1 31:2 Batch Buffer Start Address
Project: All
Address: GraphicsAddress[31:2]
Surface Type: BatchBuffer
This field specifies Bits 31:2 of the starting address of the batch buffer.

1:0 Reserved Project: All Format: MBZ

1.3.5.1 Command Access of Privileged Memory

Memory space mapped through the global GTT is considered “privileged” memory. Commands that have the capability of
accessing both privileged and unprivileged (PPGTT space) memory will contain a bit that, if set, will attempt a “privileged”
access through the GGTT rather than an unprivileged access through the context-local PPGTT.

“User mode” command buffers should not be able to access privileged memory under any circumstances. These command
buffers will be issued by the kernel mode driver with the batch buffer’s Buffer Security Indicator set to “non-secure”.
Commands in such a batch buffer are not allowed to access privileged memory. The commands in these buffers are supplied by
the user mode driver and will not be validated by the kernel mode driver.

102 Doc Ref #: IHD_OS_V1Pt3_3_10

“Kernel mode” command buffers are allowed to access privileged memory. The batch buffers Buffer Security indicator is set to
“secure” in this case. In some of the commands that access memory in a secure batch buffer, a bit is provided in the command to
steer the access to Per process or Global virtual space. Secure batch buffers are executed from the global GTT.

Commands in ring buffers and commands in batch buffers that are marked as secure (by the kernel mode driver) are allowed to
access both privileged and unprivileged memory and may choose on a command-by-command basis.

Table 1. GGTT and PPGTT Usage by Command

Command Address Allowed Access

MI_BATCH_BUFFER_START* Command Address Selectable

MI_DISPLAY_FLIP Display Buffer Base GGTT Only

MI_STORE_DATA_IMM* Storage Address Selectable

MI_STORE_DATA_INDEX** Storage Offset Selectable

MI_STORE_REGISTER_MEM* Storage Address Selectable

MI_SEMAPHORE_MBOX Semaphore Address Selectable

PIPE_CONTROL STDW Address Selectable

*Command has a GGTT/PPGTT selector added to it vs. previous Gen4 family products.

**Added bit allows offset to apply to global HW Status Page or PP HW Status Page found in context image.

1.3.5.2 Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch buffer or directly from a
ring. If one of these commands is parsed in a non-secure batch buffer, an error is flagged and the command is dropped. For
commands that generates a write, the hardware will complete the transaction but the byte enables are turned off. Batch buffers
from the User mode driver are passed directly to the kernel mode driver which does not validate them but issues them with the
Security Indicator set to ‘non-secure’ to protect the system from an attack using these privileged commands.

Table 2. Privileged Commands

Privileged Command Function in non-privileged batch buffers

MI_LOAD_REGISTER_IMM Byte enables are turned off
MI_UPDATE_GTT Byte enabled are turned off
MI_STORE_REGISTER_MEM Command is translated and completed

with byte enables turned off
MI_DISPLAY_FLIP Command is ignored by the hardware

Command privilege applies the same way in Basic Scheduler mode. Parsing one of the commands in the table above from a non-
secure batch buffer will flag an error and convert the command to a NOOP.

Doc Ref #: IHD_OS_V1Pt3_3_10
 103

1.3.5.3 Privileged Commands [PreDevSNB]

A subset of the commands are privileged. These commands may be issued only from a secure batch buffer or directly from a
ring. If one of these commands is parsed in a non-secure batch buffer, an error is flagged and the command is dropped. For
commands that generates a write, the hardware will complete the transaction but the byte enables are turned off. Batch buffers
from the User mode driver are passed directly to the kernel mode driver which does not validate them but issues them with the
Security Indicator set to ‘non-secure’ to protect the system from an attack using these privileged commands.

Table 3. Privileged Commands

Privileged Command Function in non-privileged batch buffers

MI_LOAD_REGISTER_IMM Byte enables are turned off
MI_UPDATE_GTT Byte enabled are turned off
MI_STORE_REGISTER_MEM Command is translated and completed

with byte enables turned off
MI_DISPLAY_FLIP Command is ignored by the hardware

Command privilege applies the same way in Basic Scheduler mode. Parsing one of the commands in the table above from a non-
secure batch buffer will flag an error and convert the command to a NOOP.

104 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.6 MI_DISPLAY_FLIP

MI_DISPLAY_FLIP
Project: All Length Bias: 2
Engine: Render

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to display a new buffer.
The buffer is specified with a starting address and pitch. The tiled attribute of the buffer start address is programmed
as part of the packet. This command is specific to the render engine

The operation this command performs is also known as a “display flip request” operation – in that the flip operation
itself will occur at some point in the future. This command specifies when the flip operation is to occur: either
synchronously with vertical retrace to avoid tearing artifacts (possibly on a future frame), or asynchronously (as soon as
possible) to minimize rendering stalls at the cost of tearing artifacts.

Programming Notes:
1. This command simply requests a display flip operation -- command execution then continues normally. There

is no guarantee that the flip (even if asynchronous) will occur prior to subsequent commands being executed.
(Note that completion of the MI_FLUSH command does not guarantee that outstanding flip operations have
completed). The MI_WAIT_FOR_EVENT command can be used to provide this synchronization – by pausing
command execution until a pending flip has actually completed. This synchronization can also be performed
by use of the Display Flip Pending hardware status. See Display Flip Synchronization in the Device
Programming Interface chapter of MI Functions.

2. After a display flip operation is requested, software is responsible for initiating any required synchronization
with subsequent buffer clear or rendering operations. For multi-buffering (e.g., double buffering) operations,
this will typically require updating SURFACE_STATE or the binding table to change the rendering (back)
buffer. In addition, prior to any subsequent clear or rendering operations, software must typically ensure that
the new rendering buffer is not actively being displayed. Again, the MI_WAIT_FOR_EVENT command or
Display Flip Pending hardware status can be used to provide this synchronization. See Display Flip
Synchronization in the Device Programming Interface chapter of MI Functions.

3. The display buffer command uses the X and Y offset for the tiled buffers from the Display Interface registers.
Software is allowed to change the offset via the MMIO interface irrespective of the flip commands enqueued in
the command stream. For tiled buffers, the display subsystem uses the X and Y offset in generation of the final
request to memory. The offset is always updated on the next vblank for both Synchronous and Asynch Flips. It
is not necessary to have a flip enqueued to update the X and Y offset

4. The display buffer command uses the linear dword offset for the linear buffers from the Display Interface
registers. Software is allowed to change the offset via the MMIO interface irrespective of the flip commands
enqueued in the command stream. For linear buffers, the display subsystem uses the dword offset in generation
of the final request to memory.
• For synchronous flips the offset is updated on the next vblank. It is not necessary to have a sync flip

enqueued to update the dword offset.
• Linear memory does not support asynchronous flips

5. DWord 3 (panel fitter flip) must not be sent with asynchronous flips. It is only allowed to be sent with
synchronous flips.

Doc Ref #: IHD_OS_V1Pt3_3_10
 105

MI_DISPLAY_FLIP
DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 14h MI_DISPLAY_FLIP Format: OpCode

22 Async Flip
Indicator

Project: All Format: Enable

This bit should always be set if DW2 [1:0] == ‘01’ (async flip). This field is required due to
HW limitations. This bit is used by the render pipe while DW2 is used by the display
hardware.

18:8 Reserved Project: Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:16 Reserved Project: All Format: MBZ
15:6 Display Buffer Pitch

Project: All
Default Value: 0h DefaultVaueDesc
Format: U10
For Synchronous Flips only, this field specifies the 64-byte aligned pitch of the
new display buffer.

For Asynchronous Flips, this parameter is programmed so that all the flips in a
flip chain should maintain the same pitch as programmed with the last
synchronous flip or direct thru mmio.

5:1 Reserved Project: All Format: MBZ

106 Doc Ref #: IHD_OS_V1Pt3_3_10

Project: All Length Bias: 2
Engine: Render

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to display a
new buffer. The buffer is specified with a starting address and pitch. The tiled attribute of the buffer start
address is programmed as part of the packet. This command is specific to the render engine

The operation this command performs is also known as a “display flip request” operation – in that the flip
operation itself will occur at some point in the future. This command specifies when the flip operation is
to occur: either synchronously with vertical retrace to avoid tearing artifacts (possibly on a future frame),
or asynchronously (as soon as possible) to minimize rendering stalls at the cost of tearing artifacts.

Programming Notes:
6. This command simply requests a display flip operation -- command execution then continues

normally. There is no guarantee that the flip (even if asynchronous) will occur prior to
subsequent commands being executed. (Note that completion of the MI_FLUSH command does
not guarantee that outstanding flip operations have completed). The MI_WAIT_FOR_EVENT
command can be used to provide this synchronization – by pausing command execution until a
pending flip has actually completed. This synchronization can also be performed by use of the
Display Flip Pending hardware status. See Display Flip Synchronization in the Device
Programming Interface chapter of MI Functions.

7. After a display flip operation is requested, software is responsible for initiating any required
synchronization with subsequent buffer clear or rendering operations. For multi-buffering (e.g.,
double buffering) operations, this will typically require updating SURFACE_STATE or the
binding table to change the rendering (back) buffer. In addition, prior to any subsequent clear or
rendering operations, software must typically ensure that the new rendering buffer is not actively
being displayed. Again, the MI_WAIT_FOR_EVENT command or Display Flip Pending
hardware status can be used to provide this synchronization. See Display Flip Synchronization in
the Device Programming Interface chapter of MI Functions.

8. The display buffer command uses the X and Y offset for the tiled buffers from the Display
Interface registers. Software is allowed to change the offset via the MMIO interface irrespective
of the flip commands enqueued in the command stream. For tiled buffers, the display subsystem
uses the X and Y offset in generation of the final request to memory. The offset is always updated
on the next vblank for both Synchronous and Asynch Flips. It is not necessary to have a flip
enqueued to update the X and Y offset

9. The display buffer command uses the linear dword offset for the linear buffers from the Display
Interface registers. Software is allowed to change the offset via the MMIO interface irrespective
of the flip commands enqueued in the command stream. For linear buffers, the display subsystem
uses the dword offset in generation of the final request to memory.
• For synchronous flips the offset is updated on the next vblank. It is not necessary to have a

sync flip enqueued to update the dword offset.
• Linear memory does not support asynchronous flips

10. DWord 3 (panel fitter flip) must not be sent with asynchronous flips. It is only allowed to be sent
with synchronous flips.

Doc Ref #: IHD_OS_V1Pt3_3_10
 107

2 31:12 Display Buffer Base Address
Project: All
Address: GraphicsAddress[31:12]
This field specifies Bits 31:12 of the Graphics Address of the new display buffer.
(Refer to the Display Address Start Address Register description in the Display
Registers chapter).

Programming Notes
• The Display buffer must reside completely in Main Memory
• This address is always translated via the global (rather than per-

process) GTT
1:0 Flip Type

Project: All
Default Value: 00h Synchronous flip
This field specifies whether the flip operation should be performed
asynchronously to vertical retrace.

Value Na me Description Project

00h Sync Flip The flip will occur during the
vertical blanking interval – thus
avoiding any tearing artifacts.

All

01h Async Flip The flip will occur “as soon as
possible” – and may exhibit
tearing artifacts

All

1Xh Reserved All

Programming Notes

• The Display Buffer Pitch and Tile parameter fields cannot be
changed for asynchronous flips (i.e., the new buffer must have the same
pitch/tile format as the previous buffer).

• Supported on X-Tiled Frame buffers only.

• For Asynch Flips the Buffers used must be 32KB aligned.

• Supported on Display Planes A and B and C only

3 31 Enable Panel
Fitter

Project: All Format: Enable

Enables the panel fitter on the pipe attached to the plane selected for this flip.
30:28 Reserved Project: All Format: MBZ

108 Doc Ref #: IHD_OS_V1Pt3_3_10

27:16 Pipe Horizontal Source Image
Size

Project: All Format: U32

This 12-bit field specifies Horizontal source image size up to 4096. This
determines the size of the image created by the display planes sent to the
blender. The value programmed should be the source image size minus one.

This field obeys all the rules of the Horizontal Source Image Size registers.

The pipe affected will be the pipe attached to the plane selected for this flip.
15:12 Reserved Project: All Format: MBZ
11:0 Pipe Vertical Source Image

ReSize
Project: All Format: U32

This 12-bit field specifies the new vertical source image size up to 4096 lines.
This determines the size of the image created by the display planes sent to the
blender. The value programmed should be the source image size minus one.

 This field obeys all the rules of the Vertical Source Image Size registers.

The pipe affected will be the pipe attached to the plane selected for this flip.

1.3.7 MI_FLUSH

MI_FLUSH
Project: All Length Bias: 1
Engine: Render

The MI_FLUSH command is used to perform an internal “flush” operation. The parser pauses on an internal flush
until all drawing engines have completed any pending operations and the read caches are invalidated including the
texture cache accessed via the Sampler or the data port. In addition, this command can also be used to:

1. Flush any dirty data in the Render Cache to memory. This is done by default, however this can be inhibited.
2. Invalidate the state and command cache.

Usage note: After this command is completed and followed by a Store DWord-type command, CPU access to graphics
memory will be coherent (assuming the Render Cache flush is not inhibited). This command is specific to the render
engine. Other engines use MI_FLUSH_DW

[DevSNB]: This command is considered deprecated and will be removed completely in future projects. If it must still
be used, enable bit 12 in the MI_MODE (0x209C) register

Note that if no post-sync operation is enabled for Flush completion, a register write to DE scratch space will be
generated by command streamer. Scratch space description is given in DE Bspecs.

Doc Ref #: IHD_OS_V1Pt3_3_10
 109

MI_FLUSH
DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 04h MI_FLUSH Format: OpCode

22:7 Reserved Project: All Format: MBZ
6 Protected memory

Enable
Project: All Format: Enable

After completion of the flush, the hardware will limit all access to the Protected Content
Memory. Only command streamer initiated cacheable writes are allowed to non-PCM
memory.

5 Indirect State Pointers Disable Project: All Format: Disable
At the completion of the flush, the indirect state pointers in the hardware will be considered
as invalid ie the indirect pointers will not be restored for the context.

4 Generic Media State Clear Project: All Format: Disable
If set, all generic media state context information will not be included with the next context
save, assuming no new state is initiated after the flush. If clear, the generic media state
context save state will not be affected. An MI_FLUSH with this bit set should be issued
once all the Media Objects that will be processed by a given persistent root thread have
been issued or when an MI_SET_CONTEXT switching from a generic media context to a
3D context completes. When using MI_SET_CONTEXT, once state is programmed, it will
be saved and restarted as part of any context each time that context is saved/restored until
an MI_FLUSH with this bit set is issued in that context.

3 Global Snapshot Count Reset Project: All Format: Boolean

Programming Notes Project

TIMESTAMP are not reset by MI_FLUSH with this bit set. TIMESTAMP and
PS_DEPTH_COUNT can be reset by writing 0 to them

All

Value Na me Description Project

0h Don’t Reset Do not reset the snapshot counts or Statistics
Counters.

All

1h Reset Reset the snapshot count in Gen4 for all the units
and reset the Statistics Counters except as noted
above.

All

2 Render Cache Flush Inhibit Project: All Format: Boolean

If set, the Render Cache is not flushed as part of the processing of this command.

Value Na me Description Project

0h Flush Flush the Render Cache All

1h Don’t Flush Do not flush the Render Cache All

110 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_FLUSH
1 State/Instruction Cache Invalidate Project: All Format: Boolean

If set, Invalidates the State and Instruction Cache

Value Na me Description Project

0h Don’t
Invalidate

Leave State/Instruction Cache unaffected All

1h Invalidate Invalidate State/Instruction Cache All
0 Reserved Project: All Format: MBZ

1.3.8 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: All Length Bias: 2
Engine: Render

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command to
the specified Register Offset (i.e., offset into Memory-Mapped Register Range).

Programming Notes:
• A stalling flush must be sent down pipeline before issuing this command
• The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF

register. If this command is disallowed then the command stream converts it to a NOOP.
• If this command is executed from a BB then the behavior of this command is controlled by Dword 0, Bit 8

(Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure then the
command stream converts this command to a NOOP. Note that the corresponding ring buffer must allow a
register update for this command to execute.

• To ensure this command gets executed before upcoming commands in the ring, either a stalling
pipeControl should be sent after this command, or MMIO 0x20C0 bit 7 should be set to 1.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 22h MI_LOAD_REGISTER_IMM Format: OpCode

22:12 Reserved Project: All Format: MBZ
11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord [7:0]
Range Must specify a valid register write operation
This field has only 2 options. If [11:8] is ‘1111’, then the register write will not occur. Any
other value and the register write will be fully written.

Doc Ref #: IHD_OS_V1Pt3_3_10
 111

MI_LOAD_REGISTER_IMM
7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:2 Register Offset
Format: U30
Address: MmioAddress[31:2]
This field specifies bits [31:2] of the offset into the Memory Mapped Register Range (i.e.,
this field specifies a DWord offset).

1:0 Reserved Project: All Format: MBZ
2 31:0 Data DWord

Mask: Bytes Write Disables
Format: U32
This field specifies the DWord value to be written to the targeted location.

1.3.9 MI_NOOP

MI_NOOP
Project: All Length Bias: 1

 Engine: Render

The MI_NOOP command basically performs a “no operation” in the command stream and is typically used to pad the
command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one minor
(optional) function this command can perform – a 22-bit value can be loaded into the MI NOPID register. This
provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide sequencing
information for a subsequent breakpoint interrupt).

Performance Note: On [Pre-DevSNB, Pre-DEVILK] The process time to execute a NOP command is min of 6 clock
cycles. On [DEVILK] The NOP process time is reduced to 1 clock. One example usage of the improved NOP
throughput is for some multi-pass media application whereas some unwanted media object commands are replaced by
MI_NOOP without repacking the commands in a batch buffer.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 0h MI_NOOP Format: OpCode

112 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_NOOP
22 Identification Number Register Write Enable

Project: All
Format: Enable
This field enables the value in the Identification Number field to be written into the MI
NOPID register. If disabled, that register is unmodified – making this command an effective
“no operation” function.

Value Na me Description Project

0h Disable Do not write the NOP_ID register. All

1h Enable Write the NOP_ID register. All
31:0 Identification Number Project: All Format: U22

This field contains a 22-bit number which can be written to the MI NOPID register.

Doc Ref #: IHD_OS_V1Pt3_3_10
 113

1.3.10 Surface Probing

These commands are only valid when the “Surface Fault Enable” bit is set in the GFX_MODE register

1.3.10.1 MI_PROBE

MI_PROBE
Project: All Length Bias: 2
Engine: Render

The probe command is inserted into a ring or batch buffer in order to validate the base address(es) of a surface(s)
required by subsequent commands. When parsed, the probe command will do a “test” access of the surface base
address to see if it is valid. The probe will also be written to the specified slot of a memory-based probe list such that it
can be re-validated if the current context is switched out and then switched back in. If the test access encounters an
invalid page table entry, it said to “fault”. Faulting probes will trigger the current context to be switched.

A probe command containing multiple probes will process all of them regardless of which ones fault. If any probe
faulted and the pipeline is busy, the next command (unless it is a probe or unprobe command) will stall until the
pipeline drains. Once the pipeline is empty, the pending probes will be written to the probe list with the faulted probes
ndicated and a context switch will occur.

Note that surfaces accessed through the global GTT need not be validated. It is assumed that Global GTT pages will
not be invalidated while a context is switched out. Probe and unprobe are not privileged commands. The probe
command can be used to insert only 512 probes in one command. Note that the total number of probes allowed in the
system is 1024.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 25h MI_PROBE Format: OpCode

22:10 Reserved Project: All Format: MBZ
9:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1..n 31:12 Surface Page Base Address
Project: All
Address: PerProcessGraphicsVirtualAddress[31:12]
Surface Type: U32
Range 0..2^32-1
The Per Process Address to validate.

11:10 Reserved Project: All Format: MBZ

114 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_PROBE
9:0 Slot Number

Project: All
Format: ProbeSlotIndex
Range [0,1023]
The index into the probe list where this probe will be stored.

1.3.10.2 MI_UNPROBE

MI_UNPROBE
Project: All Length Bias: 1
Engine: Render

There are 2 ways to remove probes. SW may issue a new probe to the same slot as an existing probe (presumably with
a new surface base address), and the old probe will be replaced with the new, effectively deleting the old probe. If it
has no new probe to place in the slot, SW may issue the unprobe command to remove probes by invaliding probe slots.

The unprobe command is used to remove probes from the probe list. No Surface Address is provided; the specified
slot is simply marked invalid. The Unprobe command does not affect the probe list in memory; it only clears probe
Slot Valid bits in the Probe List Slot Valid Registers (see Memory Interface Registers).

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 06h MI_UNPROBE Format: OpCode

22:10 Reserved Project: All Format: MBZ
9:0 Slot Number

Project: All
Format: ProbeSlotIndex
Range [0,1023]
The probe list index of the probe to be removed.

Doc Ref #: IHD_OS_V1Pt3_3_10
 115

1.3.11 MI_REPORT_HEAD

MI_REPORT_HEAD
Project: All Length Bias: 1
Engine: Render

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a cacheable
(snooped) system memory location.

The location written is relative to the address programmed in the Hardware Status Page Address Register.

Programming Notes:

• This command must not be executed from a Batch Buffer (Refer to the description of the HSW_PGA register).

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 07h MI_REPORT_HEAD Format: OpCode

22:0 Reserved Project: All Format: MBZ

116 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.12 MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX
Project: All Length Bias: 2
Engine: Render

This command is provided as alternative to MI_SEMAPHORE to provide mailbox-type semaphores where there is no
update of the semaphore by the checking process (the consumer). Single-bit compare-and-update semantics are also
provided. In either case, atomic access of semaphores need not be guaranteed by hardware as with the previous
command. This command should eventually supersede the previous command.

Synchronization between contexts (especially between contexts running on 2 different engines) is provided by the
MI_SEMAPHORE_MBOX command. Note that contexts attempting to synchronize in this fashion must be able to
access a common memory location. This means the contexts must share the same virtual address space (have the same
page directory), must have a common physical page mapped into both of their respective address spaces or the
semaphore commands must be executing from a secure batch buffer or directly from a ring with the Use Global GTT
bit set such that they are “privileged” and will use the (always shared) global GTT.

MI_SEMAPHORE with the Update Semaphore bit set (and the Compare Semaphore bit clear) implements the
Signal command, while the Wait command is indicated by Compare Semaphore being set. Note that Wait can cause a
context switch. Signal increments unconditionally.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 16h MI_SEMAPHORE_MBOX Format: OpCode

22 Use Global GTT Project: All Format: U32
If set, this command will use the global GTT to translate the Semaphore Address and this
command must be executing from a privileged (secure) batch buffer. If clear, the PPGTT
will be used to translate the Semaphore Address.

This bit will be ignored (and treated as if clear) if this command is executed from a non-
privileged batch buffer. It is allowed for this bit to be clear when executing this command
from a privileged (secure) batch buffer or directly from a ring buffer.

21 Update Semaphore Project: All Format: U32
If set, the value from the Semaphore Data Dword is written to memory. If Compare
Semaphore is also set, the semaphore is not updated if the semaphore comparison fails.

If clear, the data at Semaphore Address is not changed.
20 Compare Semaphore Project: All Format: U32

If set, the value from the Semaphore Data Dword is compared to the value from the
Semaphore Address in memory. If the value at Semaphore Address is greater than the
Semaphore Data Dword, execution is continued from the current command buffer.

If clear, no comparison takes place. Update Semaphore must be set in this case.
19 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 117

MI_SEMAPHORE_MBOX
18 Compare Register Project: All Format: Compare Type

If set, data in MMIO register will be used for compare.
If clear, data in memory will be used for compare.

17 Register Select Project: All Format: Register Select
If compare register is set in bit[18], this filed indicate which register will be used.
0: VCS register (RVSYNC)
1: BCS regiser (RBSYNC)

16:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:0 Semaphore Data Dword Project: All Format: U32
Data dword to compare/update memory. The Data dword is supplied by software to control
execution of the command buffer. If the compare is enabled and the data at Semaphore
Address is greater than this dword, the execution of the command buffer continues.

2 31:2 PointerBitFieldName/MMIO Register Address
Project: All
Address: GraphicsVirtualAddress[31:2]
Surface Type: Semaphore
if Compare Register bit[18] is cleared, this field is the Graphics Memory Address of the 32
bit value for the semaphore.
If Compare Register bit[18] is set, this field is the MMIO address of the register for the
semaphore.

1:0 Reserved Project: All Format: MBZ

118 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.13 MI_SET_CONTEXT

MI_SET_CONTEXT
Project: All Length Bias: 2
Engine: Render

The MI_SET_CONTEXT command is used to specify the logical context associated with the hardware context. A
logical context is an area in memory used to store hardware context information, and the context is referenced via a
2KB-aligned pointer. If the (new) logical context is different (i.e., at a different memory address), the device will
proceed to save the current HW context values to the current logical context address, and then restore (load) the new
logical context by reading the context from the new address and loading it into the hardware context state. If the
logical context address specified in this command matches the current logical context address, this command is
effectively treated as a NOP.

This command also includes some controls over the context save/restore process. It is specific to the render engine

• The Force Restore bit can be used to refresh the on-chip device state from the same memory address if the
indirect state buffers have been modified.

• The Restore Inhibit bit can be used to prevent the new context from being loaded at all. This must be used to
prevent an uninitialized context from being loaded. Once software has initialized a context (by setting all state
variables to initial values via commands), the context can then be stored and restored normally.

• This command needs to be always followed by a single MI_NOOP instruction to workaround a Gen4 silicon
issue.

• When switching from a generic media context to a 3D context, the generic media state must be cleared via the
Generic Media State Clear bit 16 in PIPE_CONTROL (or bit 4 in MI_FLUSH) before saving 3D context.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 18h MI_SET_CONTEXT Format: OpCode

22:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

Doc Ref #: IHD_OS_V1Pt3_3_10
 119

MI_SET_CONTEXT
1 31:12 Logical Context Address

Project: All
Address: GraphicsAddress[31:12]
Surface Type: Logical Context
This field contains the 4KB-aligned physical address of the Logical Context that is to be
loaded into the hardware context. If this address is equal to the CCID register associated
with the current ring, no load will occur. Prior to loading this new context, the device will
save the existing context as required. After the context switch operation completes, this
address will be loaded into the associated CCID register.

[DevSNB A]

Description Ring Command

Switch to default
context

MI_SET_CONTEXT save old_ctx,
restore default ctx

Nuke default context MI_LOAD_REGISTER_IMM address
0x2180, data = 0x0

Wait for nuking to
complete

PIPE_CONTROL with CS stall (bit20 in
DW1) bit set (PIPE_CONTROL
restrictions apply)

Switch to new context MI_SET_CONTEXT restore new ctx
11:10 Reserved Project: All Format: MBZ

9 Reserved Project: Format: MBZ
8 Reserved, Must be 1 Project: All Format: Must Be One

7:4 Reserved Project: All Format: MBZ
1 Force Restore Project: All Format: U32

When switching to this logical context a comparison between Logical Context Address and
the contests of the CCID register is performed. Normally, matching addresses prevent a
context restore from occurring; however, when this bit is set a context restore is forced to
occur. This bit cannot be set with Restore Inhibit.

Note: This bit is not saved in the associated CCID register. It only affects the processing
of this command.

0 Restore Inhibit Project: All Format: U32
If set, the restore of the HW context from the logical context specified by Logical Context
Address is inhibited (i.e., the existing HW context values are maintained). This bit must be
used to prevent the loading of an uninitialized logical context. If clear, the context switch
proceeds normally. This bit cannot be set with Force Restore.

Note: This bit is not saved in the associated CCID register. It only affects the processing of
this command.

120 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.14 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: All Length Bias: 2
Engine: Render

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the
specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with the
CPU cache (i.e., the processor cache is snooped).

Programming Notes:
This command should not be used within a “non-secure” batch buffer to access global virtual space. Doing so will
cause the command parser to perform the write with byte enables turned off. This command can be used within ring
buffers and/or “secure” batch buffers.
This command can be used for general software synchronization through variables in cacheable memory (i.e., where
software does not need to poll un-cached memory or device registers).
This command simply initiates the write operation with command execution proceeding normally. Although the write
operation is guaranteed to complete “eventually”, there is no mechanism to synchronize command execution with the
completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 20h MI_STORE_DATA_IMM Format: OpCode

22 Use Global GTT
Project: All
This bit will be ignored and treated as if clear when executing from a non-privileged batch
buffer. It is allowed for this bit to be clear when executing this command from a privileged
(secure) batch buffer. This bit must be ‘1’ if the Per Process GTT Enable bit is clear.

Value Na me Description Project

0h Per Process
Graphics Address

 All

1h Global Graphics
Address

This command will use the global GTT to
translate the Address and this command must
be executing from a privileged (secure) batch
buffer.

All

21:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 2h Excludes DWord (0,1) =
2 for DWord, 3 for QWord

Format: =n Total Length - 2
1 31:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 121

MI_STORE_DATA_IMM
2 31:2 Address

Project: All
Address: GraphicsAddress[31:2]
Surface Type: U32(2)
This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store
address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B
aligned for a store “QW” command.

1:0 Reserved Project: All Format: MBZ
3 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 Data DWord 1 Project: All Format: U32
This field specifies the upper DWord value to be written to the targeted QWord location
(DW 1).

1.3.15 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: All Length Bias: 2
Engine: Render

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the specified
offset from the System Address defined by the Hardware Status Page Address Register. As the write targets a System
Address, the write operation is coherent with the CPU cache (i.e., the processor cache is snooped).

Programming Notes:
Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is
UNDEFINED.
This command can be used for general software synchronization through variables in cacheable memory (i.e., where
software does not need to poll uncached memory or device registers).
This command simply initiates the write operation with command execution proceeding normally. Although the write
operation is guaranteed to complete “eventually”, there is no mechanism to synchronize command execution with the
completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 21h MI_STORE_DATA_INDEX Format: OpCode

122 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_STORE_DATA_INDEX
22 Reserved Project: CTG+ Format:

Setting this bit will cause this command to offset in the Surface Probe List instead of the
hardware status page. This is intended to be used internally only (it is UNDEFINED to set
this bit in a command in a ring or batch buffer.)

21 Use Per-Process Hardware Status Page
Project: All
If this bit is set, this command will index into the per-process hardware status page at offset
28K from the LRCA. If clear, the Global Hardware Status Page will be indexed. This bit will
be ignored and treated as set if this command is executed from within a non-secure batch
buffer, This

20:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)
= 1 for DWord, 2 for QWord

Format: =n Total Length - 2
1 31:12 Reserved Project: All Format: MBZ

11:2 Offset
Project: All
Format: U10 zero-based DWord offset into the HW status page.
Address: HardwareStatusPageOffset[11:2]
Surface Type: U32
Range [16, 1023]
This field specifies the offset (into the hardware status page) to which the data will be
written. Note that the first few DWords of this status page are reserved for special-purpose
data storage – targeting these reserved locations via this command is UNDEFINED.
This address must be 8B aligned for a store “QW” command.

1:0 Reserved Project: All Format: MBZ
2 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW 0).

3 31:0 Data DWord 1 Project: All Format: U32
This field specifies the upper DWord value to be written to the targeted QWord location
(DW 1).

Doc Ref #: IHD_OS_V1Pt3_3_10
 123

1.3.16 MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM
Project: All Length Bias: 2
Engine: Render

The MI_STORE_REGISTER_MEM command requests a register read from a specified memory mapped
register location in the device and store of that DWord to memory. The register address is specified along
with the command to perform the read.
Programming Notes:

The command temporarily halts command execution.

The memory address for the write is snooped on the host bus.

This command should not be used within a "non-secure" batch buffer to access global virtual space. Doing
so will cause the command parser to perform the write with byte enables turned off. This command can be
used within ring buffers and/or "secure" batch buffers.

This command will cause undefined data to be written to memory if given register addresses for the
PGTBL_CTL_0 or FENCE registers

SNB-A0: To avoid deadlock scenarios, this command cannot be executed if there are additional posted
writes (i.e. LRI, semaphore update) being sent to the same command streamer.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 24h MI_STORE_REGISTER_MEM Format: OpCode

22 Use Global GTT
Project: All
This bit will be ignored and treated as if clear when executing from a non-privileged batch
buffer. It is allowed for this bit to be clear when executing this command from a privileged
(secure) batch buffer. This bit must be ‘1’ if the Per Process GTT Enable bit is clear.

Value Na me Description Project

0h Per Process
Graphics Address

 All

1h Global Graphics
Address

This command will use the global GTT to
translate the Address and this command must
be executing from a privileged (secure) batch
buffer.

All

21:8 Reserved Project: All Format: MBZ

124 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_STORE_REGISTER_MEM
7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:26 Reserved Project: All Format: MBZ
25:2 Register Address

Project: All
Address: MMIO Address[25:2]
Surface Type: MMIO Register
This field specifies Bits 25:2 of the Register offset the DWord will be read from. As the
register address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes Project

Storing a VGA register is not permitted and will store an UNDEFINED value. All

The values of PGTBL_CTL0 or any of the FENCE registers cannot be stored
to memory; UNDEFINED values will be written to memory if the addresses of
these registers are specified.

All

1:0 Reserved Project: All Format: MBZ

2 31:2 Memory Address
Project: All
Address: GraphicsAddress[31:2]
Surface Type: MMIO Register
This field specifies the address of the memory location where the register value specified in
the DWord above will be written. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register
1:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 125

1.3.17 MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH
Project: All Length Bias: 1
Engine: Render
Blocks MMIO sync flush or any flushes related to VT-d while enabled..

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 0Bh MI_SUSPEND_FLUSH Format: OpCode

22:1 Reserved Project: All Format: MBZ
0 Suspend Flush

Project: All
Default Value: 0h DefaultVaueDesc
Format: Enable FormatDesc
This field suspends flush due to sync flush or implicit flush generated during VTD enable,
disable and IOTLB invalidation.

Value Na me Description Project

0h Disable All

1h Enable All

126 Doc Ref #: IHD_OS_V1Pt3_3_10

1.3.17.1 Description of Dedicated Performance Counters [A0-A28]

Cntr # Event Description

A0 Aggregated Core
Array Active

The sum of all cycles on all cores
spent actively executing

instructions.

A1 Aggregated Core
Array Stalled

The sum of all cycles on all cores
spent stalled. (at least one thread

loaded but the entire core is stalled
for any reason)

A2 Vertex Shader Active
Time

Total time in clocks the vertex
shader spent active on all cores.

A3 Vertex Shader Stall
Time

Total time in clocks the vertex
shader spent stalled on all cores.
This metric must be bucketed by

stall type (“other” is ok – but must
have buckets for things that are

architecturally interesting)

A4 Vertex Shader Stall
Time – Core Stall

Total time in clocks the vertex
shader spent stalled on all cores –
and the entire core was stalled as

well. This metric must be bucketed
by stall type (“other” is ok – but

must have buckets for things that are
architecturally interesting)

A5 Vertex Shader ready
but not running Time

Total time in clocks the vertex
shader spent ready to run but not

running on all cores.

A6 Geometry Shader
Active Time

Total time in clocks the geometry
shader spent active on all cores.

A7 Geometry Shader Stall
Time

Total time in clocks the geometry
shader spent stalled on all cores.
This metric must be bucketed by

stall type (“other” is ok – but must
have buckets for things that are

architecturally interesting)

A8 Geometry Shader Stall
Time – Core Stall

Total time in clocks the geometry
shader spent stalled on all cores –
and the entire core was stalled as
well. This metric must be bucketed

Doc Ref #: IHD_OS_V1Pt3_3_10
 127

Cntr # Event Description
by stall type (“other” is ok – but
must have buckets for things that are
architecturally interesting)

A9 # GS threads loaded Number of GS threads loaded at any
given time in the EUs.

A10 Geometry Shader
ready but not running
Time

Total time in clocks the geometry
shader spent ready to run but not
running on all cores.

A11 Pixel Shader Active
Time

Total time in clocks the pixel shader
spent active on all cores.

A12 Pixel Shader Stall
Time

Total time in clocks the Pixel shader
spent stalled on all cores. This
metric must be bucketed by stall
type (“other” is ok – but must have
buckets for things that are
architecturally interesting)

A13 Pixel Shader Stall
Time – Core Stall

Total time in clocks the pixel shader
spent stalled on all cores – and the
entire core was stalled as well. This
metric must be bucketed by stall
type (“other” is ok – but must have
buckets for things that are
architecturally interesting)

A14 # PS threads loaded Number of PS threads loaded at any
given time in the EUs.

A15 Pixel Shader ready but
not running Time

Total time in clocks the Pixel shader
spent ready to run but not running
on all cores.

A16 Early Z Test Pixels
Passing

Number of pixels/samples passing
early Z test (i.e. before PS dispatch)

A17 Early Z Test Pixels
Failing

Number of pixels/samples failing
early Z test (i.e. before PS dispatch)

A18 Early Stencil Test
Pixels Passing

Number of pixels/samples passing
early stencil test (i.e. before PS
dispatch)

A19 Early Stencil Test
Pixels Failing

Number of pixels/samples failing
early stencil test (i.e. before PS
dispatch)

A20 Pixel Kill Count Number of pixels/samples killed in
the pixel shader. (How about
chroma key?)

128 Doc Ref #: IHD_OS_V1Pt3_3_10

Cntr # Event Description

A21 Alpha Test Pixels
Failed

Number of pixels/samples that fail
alpha-test. Alpha to coverage may
have some challenges in per-pixel
invocation.

A22 Post PS Stencil Pixels
Failed

Number of pixels/samples fail
stencil test in the backend.

A23 Post PS Z buffer
Pixels Failed

Number of pixels/samples fail Z test
in the backend.

A24 Pixels/samples Written
in the frame buffer

MRT case will report multiple of
those.

A25 GPU Busy CSunit indicating that ring is idle.

A26 CL active and not
stalled

Clipper Fixed Function is active but
not stalled

A27 SF active and stalled SF Fixed Function is active but not
stalled

Doc Ref #: IHD_OS_V1Pt3_3_10
 129

1.3.18 MI_UPDATE_GTT

MI_UPDATE_GTT
Project: All Length Bias: 2
Engine: Render

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a predictable
place in the command flow.

An MI_FLUSH should be placed before this command, since work associated with preceding commands that are still
in the pipeline may be referencing GTT entries that will be changed by its execution. The flush will also invalidate
TLBs and read caches that may become invalid as a result of the changed GTT entries. MI_FLUSH is not required if it
can be guaranteed that the pipeline is free of any work that relies on changing GTT entries (such as MI_UPDATE_GTT
contained in a paging DMA buffer that is doing only update/mapping activities and no rendering).

This is a privileged command. This command will be converted to a no-op and an error flagged if it is executed from
within a non-secure batch buffer.

PPGTT updates cannot be done via MI_UPDATE_GTT, gfx driver will have to use storeDW for PPGTT inline
updates.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 23h MI_UPDATE_GTT Format: OpCode

22 Use Global GTT
Project: All
Reserved: Must be 1h. Updating Per Process Graphics Address is not supported

Value Na me Description Project

0h Per Process
Graphics
Address

Illegal, not supported. All

1h Global
Graphics
Address

This command will use the global GTT to
translate the Address and this command
must be executing from a privileged
(secure) batch buffer.

All

21:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

130 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_UPDATE_GTT
1 31:12 Entry Address

Project: All
Address: GraphicsAddress[31:12]
This field simply holds the DW offset of the first table entry to be modified. Note that one or
more of the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.

11:0 Reserved Project: All Format: MBZ
2..n 31:0 Entry Data

Project: All
Format: Table Entry
This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries
(PTEs) in Memory Interface Registers.

1.3.19 MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: All Length Bias: 1
Engine: Render

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue
parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 02h MI_USER_INTERRUPT Format: OpCode

22:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V1Pt3_3_10
 131

1.3.20 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1
Engine: Render

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a specific event occurs or
while a specific condition exists. See Wait Events/Conditions, Device Programming Interface in MI Functions. Only
one event/condition can be specified -- specifying multiple events is UNDEFINED.

The effect of the wait operation depends on the source of the command. If executed from a batch buffer, the parser will
halt (and suspend command arbitration) until the event/condition occurs. If executed from a ring buffer, further
processing of that ring will be suspended, although command arbitration (from other rings) will continue. Note that if a
specified condition does not exist (the condition code is inactive) at the time the parser executes this command, the
parser proceeds, treating this command as a no-operation.

If execution of this command from a primary ring buffer causes a wait to occur, the active ring buffer will effectively
give up the remainder of its time slice (required in order to enable arbitration from other primary ring buffers).

DWord Bit Description

0 31:29 Command Type
Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default Value: 03h MI_WAIT_FOR_EVENT Format: OpCode

22:19 Reserved Project: All Format: MBZ
18 Reserved Project: BW Format: MBZ
18 Display Pipe B Start of V Blank Wait Enable Project: All Format: Enable

This field enables a wait until the start of next Display Pipe B “Vertical Blank” event occurs.
This event is defined as the start of the next Display B Vertical blank period. Note that this
can cause a wait for up to a frame. See Start of Vertical Blank Event in the Device
Programming Interface chapter of MI Functions.

Errata De scription Project

BWT013 MBZ BW
17 Reserved Project: BW Format: MBZ

132 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_WAIT_FOR_EVENT
17 Display Pipe A Start of V Blank Wait Enable Project: CL+ Format: Enable

This field enables a wait until the start of next Display Pipe A “Vertical Blank” event occurs.
This event is defined as the start of the next Display A Vertical blank period. Note that this
can cause a wait for up to a frame. See Start of Vertical Blank Event in the Device
Programming Interface chapter of MI Functions.

Programming Notes Project

Notes All

Errata De scription Project

BWT013 MBZ BW
16 Overlay Flip Pending Wait Enable Project: BW,CL Format: Enable

This field enables a wait for the duration of an Overlay “Flip Pending” condition. If a flip
request is pending, the parser will wait until the flip operation has completed (i.e., the new
overlay address has been loaded into the corresponding overlay registers). See Overlay
Flip Pending Condition in the Device Programming Interface chapter of MI Functions.

16 Display Sprite B Flip Pending Wait Enable Project: CTG+ Format: Enable
This field enables a wait for the duration of a Display Sprite B “Flip Pending” condition. If a
flip request is pending, the parser will wait until the flip operation has completed (i.e., the
new front buffer address has now been loaded into the active front buffer registers). See
Display Flip Pending Condition in the Device Programming Interface chapter of MI
Functions.

15 Reserved Project: All Format: MBZ
14 Display Pipe B H Blank Wait Enable Project: All Format: Enable

This field enables a wait until the start of next Display Pipe B “Horizontal Blank” event
occurs. This event is defined as the start of the next Display B Horizontal blank period.
Note that this can cause a wait for up to a line. See Horizontal Blank Event in the Device
Programming Interface chapter of MI Functions.

13 Display Pipe A H Blank Wait Enable Project: All Format: Enable
This field enables a wait until the start of next Display Pipe A “Horizontal Blank” event
occurs. This event is defined as the start of the next Display A Horizontal blank period.
Note that this can cause a wait for up to a line. See Horizontal Blank Event in the Device
Programming Interface chapter of MI Functions.

Doc Ref #: IHD_OS_V1Pt3_3_10
 133

MI_WAIT_FOR_EVENT
12:9 Condition Code Wait Select

Project: All
This field enables a wait for the duration that the corresponding condition code is active.
These enable select one of 15 condition codes in the EXCC register, that cause the parser
to wait until that condition-code in the EXCC is cleared.

Value Na me Description Project

0h Not Enabled Condition Code Wait not enabled All

1h-5h Enabled Condition Code select enabled; selects one of 5
codes, 0 – 4

All

6h-15h Reserved All

Programming Notes Project

Note that not all condition codes are implemented. The parser operation is
UNDEFINED if an unimplemented condition code is selected by this field. The
description of the EXCC register (Memory Interface Registers) lists the codes
that are implemented.

All

8 Display Plane C Flip Pending Wait Enable Project: BW,CL Format: Enable

This field enables a wait for the duration of a Display Plane C “Flip Pending” condition. If a
flip request is pending, the parser will wait until the flip operation has completed (i.e., the
new front buffer address has now been loaded into the active front buffer registers). See
Display Flip Pending Condition in the Device Programming Interface chapter of MI
Functions.

8 Display Sprite A Flip Pending Wait Enable Project: CTG+ Format: Enable
This field enables a wait for the duration of a Display Sprite A “Flip Pending” condition. If a
flip request is pending, the parser will wait until the flip operation has completed (i.e., the
new front buffer address has now been loaded into the active front buffer registers). See
Display Flip Pending Condition in the Device Programming Interface chapter of MI
Functions.

7 Display Pipe B Vertical Blank Wait Enable Project: All Format: Enable
This field enables a wait until the next Display Pipe B “Vertical Blank” event occurs. This
event is defined as the start of the next Display Pipe B vertical blank period. Note that this
can cause a wait for up to an entire refresh period. See Vertical Blank Event (See
Programming Interface).

Programming Notes Project

Prior to using the MI_WAIT_FOR_EVENT command to wait on Display Pipe
A/B VBlank events, the corresponding Vertical Blank Interrupt Enable (bit 17)
of the corresponding PIPEASTAT (70024h) or PIPEBSTAT (71024h) register
must be set. Note that this does not require an actual VBlank interrupt to be
enabled.

All

6 Display Plane B Flip Pending Wait Enable Project: All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending” condition. If a
flip request is pending, the parser will wait until the flip operation has completed (i.e., the
new front buffer address has now been loaded into the active front buffer registers). See
Display Flip Pending Condition (in the Device Programming Interface chapter of MI
Functions.

134 Doc Ref #: IHD_OS_V1Pt3_3_10

MI_WAIT_FOR_EVENT
5 Display Pipe B Scan Line Window Wait Enable Project: All Format: Enable

This field enables a wait while a Display B “In Scan Line Window” condition exists. This
condition is defined as the period of time the Display B refresh is inside the scan line
window as specified by a previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL command. If the Display B refresh is outside this window,
or a window has not been specified, the parser proceeds, treating this command as a no-
op. If the Display B refresh is currently inside this window, the parser will wait until the
refresh exits the window. See Scan Line Window Condition in the Device Programming
Interface chapter of MI Functions.

4 Frame Buffer Compression Idle Wait Enable Project: All Format: Enable
This field enables a wait while the Frame Buffer compressor is busy. The ring that this
command got executed from is removed from arbitration for the wait period and is inserted
into arbitration as soon as the frame buffer compressor is idle.

3 Display Pipe A Vertical Blank Wait Enable Project: All Format: Enable
This field enables a wait until the next Display Pipe A “Vertical Blank” event occurs. This
event is defined as the start of the next Display A vertical blank period. Note that this can
cause a wait for up to an entire refresh period. See Vertical Blank Event in the Device
Programming Interface chapter of MI Functions.

Programming Notes Project

Prior to using the MI_WAIT_FOR_EVENT command to wait on Display Pipe
A/B VBlank events, the corresponding Vertical Blank Interrupt Enable (bit 17)
of the corresponding PIPEASTAT (70024h) or PIPEBSTAT (71024h) register
must be set. Note that this does not require an actual VBlank interrupt to be
enabled.

All

2 Display Plane A Flip Pending Wait Enable Project: All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending” condition. If a
flip request is pending, the parser will wait until the flip operation has completed (i.e., the
new front buffer address has now been loaded into the active front buffer registers). See
Display Flip Pending Condition in the Device Programming Interface chapter of MI
Functions.

1 Display Pipe A Scan Line Window
Wait Enable

Project: All Format: Enable

This field enables a wait while a Display Pipe A “In Scan Line Window” condition exists. This
condition is defined as the period of time the Display A refresh is inside the scan line window as
specified by a previous MI_INCLUSIVE_SCAN_WINDOW or MI_EXCLUSIVE_SCAN_WINDOW
command. If the Display A refresh is outside this window, or a window has not been specified,
the parser proceeds, treating this command as a no-op. If the Display A refresh is currently
inside this window, the parser will wait until the refresh exits the window. See Scan Line Window
Condition in the Device Programming Interface chapter of MI Functions.

0 Reserved Project: All Format: MBZ

